320 research outputs found
Recommended from our members
Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging: Preprint
Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about ?15 C. Temperatures lower than this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703
Recommended from our members
Potential Problems with Ethylene-Vinyl Acetate for Photovoltaic Packaging (Poster)
Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support electrical isolation, optical coupling, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 C. Temperatures lower than this can be reached for extended periods of time in some climates. Due to increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703
Defining common criteria for harmonizing life cycle assessments of livestock systems
Animal production intensification puts pressure on resources, leads to environmental impacts, animal welfare and biodiversity issues. Livestock products provide key components of the human diet and contribute to rural territories through ecosystem services such as nutrient and biomass recycling. Life cycle assessment (LCA) is key to assess environmental impacts in livestock systems and products. A harmonization of LCA methods is necessary to improve evaluations in these areas as LCA still lacks accuracy and robustness in addressing sustainability across livestock systems and products. Here, a participatory harmonization approach was applied to provide a framework to evaluate LCAs of current and future livestock systems. A total of 29 workshops with targeted discussions among 21 LCA experts were organised, together with two anonymous surveys to harmonise evaluation criteria. First, key research topics for improving LCAs of livestock systems were identified as follows: i) Food, feed, fuel and biomaterial competition, crop-livestock interaction and the circular economy; ii) Biodiversity; iii) Animal welfare; iv) Nutrition; v) GHG emissions. Next, general evaluation criteria were identified for livestock focussed LCA methods, considering livestock systems characteristics: Transparency and Reproducibility, Completeness, Fairness and Acceptance, Robustness and Accuracy. Evaluation criteria specific to each key topic were also identified. This participatory method was successful in narrowing down general and specific evaluation criteria through targeted discussion. Moreover, this study provided a holistic participatory framework for the evaluation of LCA methods addressing the impacts of livestock systems across a range of key topics which can be further used for other sectors.The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: every author in the author list reports financial support from the PATHWAYS consortium project (Grant Agreement No. 101000395) funded through H2020 research programme on Food Security Sustainable Agriculture and Forestry Marine Maritime and Inland Water Research and the Bioeconomy
Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro
Protein glycation involves formation of early (Amadori) and late advanced glycation endproducts (AGEs) together with free radicals via autoxidation of glucose and Amadori products. Glycation and increased free radical activity underlie the pathogenesis of diabetic complications. This study investigated whether aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract in vitro in a cell-free system. Proteins were glycated by incubation with sugars (glucose, methylglyoxal or ribose) ±5–15 mg/mL of aged and fresh garlic extracts. Advanced glycation endproducts were measured using SDS-PAGE gels and by ELISA whereas Amadori products were assessed by the fructosamine method. Colorimetric methods were used to assess antioxidant activity, free radical scavenging capacity, protein-bound carbonyl groups, thiol groups and metal chelation activities in addition to phenolic, total flavonoid and flavonol content of aged and fresh garlic extracts. Aged garlic inhibited AGEs by 56.4% compared to 33.5% for an equivalent concentration of fresh garlic extract. Similarly, aged garlic had a higher total phenolic content (129 ± 1.8 mg/g) compared to fresh garlic extract (56 ± 1.2 mg/g). Aged garlic has more potent antiglycation and antioxidant properties compared to fresh garlic extract and is more suitable for use in future in vivo studies
Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma
BACKGROUND: Multiple myeloma is a plasma cell disorder that is characterised by clonal proliferation of malignant plasma cells in the bone marrow, monoclonal paraprotein in the blood or urine and associated organ dysfunction. It accounts for approximately 1% of cancers and 13% of haematological cancers. Myeloma arises from an asymptomatic proliferation of monoclonal plasma cells termed monoclonal gammopathy of undetermined significance (MGUS).
METHODS: MicroRNA expression profiling of serum samples was performed on three patient groups as well as normal controls. Validation of the nine microRNAs detected as promising biomarkers was carried out using TaqMan quantitative RT-PCR. MicroRNA levels in serum were normalised using standard curves to determine the numbers of microRNAs per μl of serum.
RESULTS: Three serum microRNAs, miR-720, miR-1308 and miRNA-1246, were found to have potential as diagnostic biomarkers in myeloma. Use of miR-720 and miR-1308 together provides a powerful diagnostic tool for distinguishing normal healthy controls, as well as patients with unrelated illnesses, from precancerous myeloma and myeloma patients. In addition, the combination of miR-1246 and miR-1308 can distinguish MGUS from myeloma patients.
CONCLUSION: We have developed a biomarker signature using microRNAs extracted from serum which has potential as a diagnostic and prognostic tool for multiple myeloma
Energetic, spatial and momentum character of a buried interface: the two-dimensional electron gas between two metal oxides
The interfaces between two condensed phases often exhibit emergent physical
properties that can lead to new physics and novel device applications, and are
the subject of intense study in many disciplines. We here apply novel
experimental and theoretical techniques to the characterization of one such
interesting interface system: the two-dimensional electron gas (2DEG) formed in
multilayers consisting of SrTiO (STO) and GdTiO (GTO). This system has
been the subject of multiple studies recently and shown to exhibit very high
carrier charge densities and ferromagnetic effects, among other intriguing
properties. We have studied a 2DEG-forming multilayer of the form [6 unit cells
STO/3 unit cells of GTO] using a unique array of photoemission
techniques including soft and hard x-ray excitation, soft x-ray angle-resolved
photoemission, core-level spectroscopy, resonant excitation, and standing-wave
effects, as well as theoretical calculations of the electronic structure at
several levels and of the actual photoemission process. Standing-wave
measurements below and above a strong resonance have been introduced as a
powerful method for studying the 2DEG depth distribution. We have thus
characterized the spatial and momentum properties of this 2DEG with
unprecedented detail, determining via depth-distribution measurements that it
is spread throughout the 6 u.c. layer of STO, and measuring the momentum
dispersion of its states. The experimental results are supported in several
ways by theory, leading to a much more complete picture of the nature of this
2DEG, and suggesting that oxygen vacancies are not the origin of it. Similar
multi-technique photoemission studies of such states at buried interfaces,
combined with comparable theory, will be a very fruitful future approach for
exploring and modifying the fascinating world of buried-interface physics and
chemistry.Comment: 34 pages, 10 figure
Pre-radiotherapy plasma carotenoids and markers of oxidative stress are associated with survival in head and neck squamous cell carcinoma patients: a prospective study
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare plasma levels of antioxidants and oxidative stress biomarkers in head and neck squamous cell carcinoma (HNSCC) patients with healthy controls. Furthermore, the effect of radiotherapy on these biomarkers and their association with survival in HNSCC patients were investigated.</p> <p>Methods</p> <p>Seventy-eight HNSCC patients and 100 healthy controls were included in this study. Follow-up samples at the end of radiotherapy were obtained in 60 patients. Fifteen antioxidant biomarkers (6 carotenoids, 4 tocopherols, ascorbic acid, total antioxidant capacity, glutathione redox potential, total glutathione and total cysteine) and four oxidative stress biomarkers (total hydroperoxides, γ-glutamyl transpeptidase, 8-isoprostagladin F<sub>2α </sub>and ratio of oxidized/total ascorbic acid) were measured in plasma samples. Analysis of Covariance was used to compare biomarkers between patients and healthy controls. Kaplan-Meier plots and Cox' proportional hazards models were used to study survival among patients.</p> <p>Results</p> <p>Dietary antioxidants (carotenoids, tocopherols and ascorbic acid), ferric reducing antioxidant power (FRAP) and modified FRAP were lower in HNSCC patients compared to controls and dietary antioxidants decreased during radiotherapy. Total hydroperoxides (d-ROMs), a marker for oxidative stress, were higher in HNSCC patients compared to controls and increased during radiotherapy. Among the biomarkers analyzed, high levels of plasma carotenoids before radiotherapy are associated with a prolonged progression-free survival (hazard rate ratio: 0.42, 95% CI: 0.20-0.91, p = 0.03). Additionally, high relative increase in plasma levels of d-ROMs (hazard rate ratio: 0.31, 95% CI: 0.13-0.76, p = 0.01) and high relative decrease in FRAP (hazard rate ratio: 0.42, 95% CI: 0.17-0.998, p = 0.05) during radiotherapy are also positively associated with survival.</p> <p>Conclusions</p> <p>Biomarkers of antioxidants and oxidative stress are unfavourable in HNSCC patients compared to healthy controls, and radiotherapy affects many of these biomarkers. Increasing levels of antioxidant biomarkers before radiotherapy and increasing oxidative stress during radiotherapy may improve survival indicating that different factors/mechanisms may be important for survival before and during radiotherapy in HNSCC patients. Thus, the therapeutic potential of optimizing antioxidant status and oxidative stress should be explored further in these patients.</p
Data publication with the structural biology data grid supports live analysis
Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data. sbgrid. org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis
A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae.
Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications
Mechanisms and mechanics of cell competition in epithelia
When fast-growing cells are confronted with slow-growing cells in a mosaic tissue, the slow-growing cells are often progressively eliminated by apoptosis through a process known as cell competition. The underlying signalling pathways remain unknown, but recent findings have shown that cell crowding within an epithelium leads to the eviction of cells from the epithelial sheet. This suggests that mechanical forces could contribute to cell elimination during cell competition
- …