176 research outputs found

    Wheat and barley floret development in response to nitrogen and water availability

    Get PDF
    Rivista di Agronomia : an international journal of agroecosystem managementAriel Ferrante, Roxana Savin, Gustavo A. Slafe

    Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem and root structural properties

    Get PDF
    Lodging-related traits were evaluated on the CIMMYT Core spring wheat Germplasm Panel (CIMCOG) in the Yaqui Valley of North-West Mexico during three seasons (2010–2013). Genetic variation was significant for all the lodging-related traits in the cross-year analysis, however, significant G × E interaction due to rank changes or changes in the absolute differences between cultivars were identified. The inconsistences on cultivar performances across seasons particularly reduced the heritability of key characters related to root lodging resistance (anchorage strength). Target characters related to stem lodging resistance (stem strength) showed good heritability values equal or above 0.70. Positive correlations between stem strength and stem diameter and between root plate spread and root strength were found. Selecting for greater stem diameter and wall width, greater root plate spread and shorter plant height could enable breeders to increase lodging resistance by increasing stem strength, root strength and decreasing plant leverage, respectively. Achieving a lodging-proof crop will depend on finding a wider root plate spread and implementing new management strategies. Genetic linkages between lodging traits will not constrain the combination of the key lodging-trait dimensions to achieve a lodging-proof ideotype. However, strong association between stem strength and stem wall width will increase the total biomass cost needed for lodging resistance

    High-carotenoid maize: development of plant biotechnology prototypes for human and animal health and nutrition

    Get PDF
    Carolight (R) is a transgenic maize variety that accumulates extraordinary levels of carotenoids, including those with vitamin A activity. The development of Carolight (R) maize involved the technical implementation of a novel combinatorial transformation method, followed by rigorous testing for transgene expression and the accumulation of different carotenoid molecules. Carolight (R) was envisaged as a way to improve the nutritional health of human populations that cannot access a diverse diet, but this ultimate humanitarian application can only be achieved after extensive testing for safety, agronomic performance and nutritional sufficiency. In this article, we chart the history of Carolight (R) maize focusing on its development, extensive field testing for agronomic performance and resistance to pests and pathogens, and feeding trials to analyze its impact on farm animals (and their meat/dairy products) as well as animal models of human diseases. We also describe more advanced versions of Carolight (R) endowed with pest-resistance traits, and other carotenoid-enhanced maize varieties originating from the same series of initial transformation experiments. Finally we discuss the further steps required before Carolight (R) can fulfil its humanitarian objectives, including the intellectual property and regulatory constraints that lie in its path

    Evidence for increasing global wheat yield potential

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.Fil: Guarin, Jose Rafael. National Aeronautics and Space Administration; Estados Unidos. Columbia University; Estados Unidos. Florida State University; Estados UnidosFil: Martre, Pierre. Institut Agro Montpellier SupAgro; FranciaFil: Ewert, Frank. Universitat Bonn; Alemania. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Webber, Heidi. Universitat Bonn; Alemania. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Dueri, Sibylle. Institut Agro Montpellier SupAgro; FranciaFil: Calderini, Daniel Fernando. Universidad Austral de Chile; ChileFil: Reynolds, Matthew. International Maize and Wheat Improvement Center ; MéxicoFil: Molero, Gemma. KWS; FranciaFil: Miralles, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Garcia, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Slafer, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universitat de Lleida; España. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Giunta, Francesco. Consiglio Nazionale Delle Ricerche. Istituto Di Scienze Dell Atmosfera E del Clima.; ItaliaFil: Pequeno, Diego N.L.. International Maize and Wheat Improvement Center; MéxicoFil: Stella, Tommaso. Universitat Bonn; Alemania. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Ahmed, Mukhtar. University Of Pakistan; PakistánFil: Alderman, Phillip D.. Oklahoma State University; Estados UnidosFil: Basso, Bruno. Michigan State University; Estados UnidosFil: Berger, Andres G.. Instituto Nacional de Investigacion Agropecuaria;Fil: Bindi, Marco. Università degli Studi di Firenze; ItaliaFil: Bracho-Mujica, Gennady. Universität Göttingen; AlemaniaFil: Cammarano, Davide. Purdue University; Estados UnidosFil: Chen, Yi. Chinese Academy of Sciences; República de ChinaFil: Dumont, Benjamin. Université de Liège; BélgicaFil: Rezaei, Ehsan Eyshi. Leibniz Institute Of Plant Genetics And Crop Plant Research.; AlemaniaFil: Fereres, Elias. Universidad de Córdoba; EspañaFil: Ferrise, Roberto. Michigan State University; Estados UnidosFil: Gaiser, Thomas. Universitat Bonn; AlemaniaFil: Gao, Yujing. Florida State University; Estados UnidosFil: Garcia Vila, Margarita. Universidad de Córdoba; EspañaFil: Gayler, Sebastian. Universidad de Hohenheim; Alemani

    A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations

    Get PDF
    Grain production must increase by 60% in the next four decades to keep up with the expected population growth and food demand. A significant part of this increase must come from the improvement of staple crop grain yield potential. Crop growth simulation models combined with field experiments and crop physiology are powerful tools to quantify the impact of traits and trait combinations on grain yield potential which helps to guide breeding towards the most effective traits and trait combinations for future wheat crosses. The dataset reported here was created to analyze the value of physiological traits identified by the International Wheat Yield Partnership (IWYP) to improve wheat potential in high-yielding environments. This dataset consists of 11 growing seasons at three high-yielding locations in Buenos Aires (Argentina), Ciudad Obregon (Mexico), and Valdivia (Chile) with the spring wheat cultivar Bacanora and a high-yielding genotype selected from a doubled haploid (DH) population developed from the cross between the Bacanora and Weebil cultivars from the International Maize and Wheat Improvement Center (CIMMYT). This dataset was used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Phase 4 to evaluate crop model performance when simulating high-yielding physiological traits and to determine the potential production of wheat using an ensemble of 29 wheat crop models. The field trials were managed for non-stress conditions with full irrigation, fertilizer application, and without biotic stress. Data include local daily weather, soil characteristics and initial soil conditions, cultivar information, and crop measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, yield components, and photosynthetically active radiation interception). Simulations include both daily in-season and end-of-season results for 25 crop variables simulated by 29 wheat crop models

    Genetic Insight into Yield-Associated Traits of Wheat Grown in Multiple Rain-Fed Environments

    Get PDF
    Background: Grain yield is a key economic driver of successful wheat production. Due to its complex nature, little is known regarding its genetic control. The goal of this study was to identify important quantitative trait loci (QTL) directly and indirectly affecting grain yield using doubled haploid lines derived from a cross between Hanxuan 10 and Lumai 14. Methodology/Principal Findings: Ten yield-associated traits, including yield per plant (YP), number of spikes per plan
    • …
    corecore