579 research outputs found
Covalent functionalization enables good dispersion and anisotropic orientation of multi-walled carbon nanotubes in a poly(l-lactic acid) electrospun nanofibrous matrix boosting neuronal differentiation
A biocompatible porous scaffold obtained via electrospinning a nanocomposite solution of poly(l-lactic acid) and 4-methoxyphenyl functionalized multi-walled carbon nanotubes is presented here for the first time for the enhancement of neurite outgrowth. Optimization of blend preparation and deposition parameters paves the way to the obtainment of defect-free random networks of nanofibers with homogeneous diameters in the hundreds of nanometers length scale. The tailored covalent functionalization of nanotube surfaces allows a homogeneous dispersion of the nanofillers within the polymer matrix, diminishing their natural tendency to aggregate and form bundles. This results in a remarkable effect on the crystallization temperature, as evidenced through differential scanning calorimetry. Furthermore, transmission electron microscopy shows carbon nanotubes anisotropically aligned along the fiber axes, a feature believed to enhance neurite adhesion and growth. Indeed, microscopy images show neurites extension along the direction of nanofibers, highlighting the extreme relevance of scaffold morphology in engineering complex tissue environments. Furthermore, a remarkable effect on increasing the neurite outgrowth results when using the fibrous scaffold containing dispersed carbon nanotubes in comparison with an analogous one made of only polymer, providing further evidence of the key role played by carbon nanostructures in inducing neuronal differentiation
Diagrammatic scale for assessment of grapevine rust.
Diagrammatic scales are valuable tools for plant disease epidemiology and control
PROVE DI CORROSIONE AD ALTA PRESSIONE DI CO2 PER I POZZI DI STOCCAGGIO
Nell’ambito del progetto ENI “GreenHouse Gases” è stata effettuata una attività sperimentale volta alla scelta materiali per i pozzi di stoccaggio. Utilizzando un sistema esperto per la scelta dei materiali dei pozzi è stata preparata una tabella che possa servire da guida per la selezione dei materiali per pozzi in funzione delle impurezze contenute nella CO2 e dei parametri di processo. I risultati forniti dal sistema esperto sono stati validati mediante prove sperimentali. Le prove svolte sono state: test di corrosione in autoclave, prove meccaniche, analisi chimica, indagini metallografiche
Plaque imaging volume analysis: technique and application
The prevention and management of atherosclerosis poses a tough challenge to public health organizations worldwide. Together with myocardial infarction, stroke represents its main manifestation, with up to 25% of all ischemic strokes being caused by thromboembolism arising from the carotid arteries. Therefore, a vast number of publications have focused on the characterization of the culprit lesion, the atherosclerotic plaque. A paradigm shift appears to be taking place at the current state of research, as the attention is gradually moving from the classically defined degree of stenosis to the identification of features of plaque vulnerability, which appear to be more reliable predictors of recurrent cerebrovascular events. The present review will offer a perspective on the present state of research in the field of carotid atherosclerotic disease, focusing on the imaging modalities currently used in the study of the carotid plaque and the impact that such diagnostic means are having in the clinical setting
Traditional farmers’ varieties: a valuable source of genetic variability for biofortification programs
Several studies underlined the superiority from a nutritional point of view of ancient varieties. In the last years the interest for landraces has been growing, for this reason preservation and valorisation of these genetic sources is very important. In particular these varieties are source of precious genetic variability interesting from a scientific point of view to preserve biodiversity but also for biofortification programs aimed to support small rural communities, where the particular maize germplasm has been developed. In this work we characterized from the nutritional point of view 13 ancient Italian varieties and one coming from Spain (Millo Corvo). In this pre-breeding work we demonstrate the nutritional superiority of ancient varieties if compared with modern hybrids. In particular Spinato di Gandino is the best variety for milling properties and for oil, protein, and total phosphorus content; Storo is the best variety for calorific value and for carotenoids and free phosphorus content. Using these varieties in the next future we will start a bio-fortification program aimed to obtain new populations with improved yields and high nutritional value
Database of the Italian disdrometer network
In 2021, a group of seven Italian institutions decided to bring together their know-how, experience, and instruments for measuring the drop size distribution (DSD) of atmospheric precipitation, giving birth to the Italian Group of Disdrometry (in Italian named Gruppo Italiano Disdrometria, GID, https://www.gid-net.it/, last access: 16 May 2023). GID has made freely available a database of 1 min records of DSD collected by the disdrometer network along the Italian peninsula. At the time of writing, the disdrometer network was composed of eight laser disdrometers belonging to six different Italian institutions (including research centres, universities, and environmental regional agencies). This work aims to document the technical aspects of the Italian DSD database consisting of 1 min sampling data from 2012 to 2021 in a uniform standard format defined within GID. Although not all the disdrometers have the same data record length, the DSD data collection effort is the first of its kind in Italy, and from here onwards, it opens up new opportunities in the surface characterization of microphysical properties of precipitation in the perspective of climate records and beyond. The Version 01 GID
database can be downloaded at https://doi.org/10.5281/zenodo.6875801 (Adirosi et al., 2022), while Version 02 can be downloaded at https://doi.org/10.5281/zenodo.7708563 (Adirosi et al., 2023). The difference among the two versions is the diameter–fall velocity relation used for the DSD computation
Investigation and Mechanical Modelling of Pure Molybdenum at High Strain-Rate and Temperature
This work shows the results obtained from the investigation of the mechanical behavior of two batches of pure molybdenum specimens (≥99.97 % Mo, Mo1 supplied by Plansee and Mo2 supplied by AT&M) under static and dynamic loading conditions at different temperatures, both under tensile and compressive loading conditions. Due to its properties molybdenum has applications in several fields including nuclear. At this moment, it is a good candidate for structural material application for Beam Intercepting Devices of the Large Hadron Collider at CERN, Geneva. The experimental tests in tensile loading condition were performed on small dog-bone specimens. A series of tests at room temperature and a range of strain-rates was performed in order to obtain information about the strain-rate sensitivity of the material. A series of tests at different temperatures in both static and high dynamic loading conditions was performed in order to obtain information about the thermal softening of the material. The dynamic tests were performed using the Hopkinson Bar technique, and the heating of the specimen was performed using an induction coil system. The experimental tests in compression were carried out on cylindrical specimens at room temperature and a range of strain-rates. The experimental data were analyzed via a numerical inverse method based on Finite Element numerical simulations. This approach allows to obtain the effective stress versus strain curves, which cannot be derived by using standard relations since instability and necking were present. Moreover, it also allows the non-uniform distribution of strain-rate and temperature inside the specimen to be accounted for. The results obtained from compression tests confirm the data obtained in tension in terms of strain-hardening and strain-rate sensitivity, even if the material exhibits a tension–compression asymmetry of the behavior. The analysis of the hardening, temperature and strain-rate sensitivities reveals that a unique standard visco-plastic model could not be defined to reproduce the material strength behavior under different loading conditions, especially over wide range of variation of the variables of interest
- …