156 research outputs found

    Measuring the Public value of e-Government: The eGEP2.0 model

    Get PDF
    After having briefly introduced the issue of measuring e-Government vis-\ue0-vis its impact evaluation, the paper provides an overview of the state of the art with regard to measurement of e-Government, addressing the debate on the relationship between 'public value' creation and e-Government, outlining some of the approaches advanced to measure the public value of ICT interventions in the public sector. In light of this discussion, the paper then proposes the eGEP-2.0 model which, building on its predecessor eGEP, overcome many of the limitations of existing frameworks, and more importantly pave the way for an effective impact assessment of e-Government initiatives, in relation to the policy-making process and related governance needed for their design and implementation. The results of the application of the eGEP-2.0 model on the Telematics and Informatics Plan (PiTER) of the Emilia Romagna Region in Italy are then presented and discussed. The paper concludes providing some reflections on the experience and outlining future research challenges

    Prenatal Sonographic Diagnosis of Jeune Syndrome

    Get PDF
    Asphyxiating thoracic dysplasia (Jeune syndrome) is characterized by a narrow thoracic cage, which causes severe respiratory failure with frequent perinatal death; brachymelia, predominantly of the rhizomelic type; renal anomalies; and characteristic radiographic findings of ribs, pelvis, and long tubular bones. Inheritance is autosomal recessive. Prenatal sonographic examination was performed at 17 and 19 weeks of a fetus of parents whose first child had died of Jeune syndrome. The length of the humeri, femora, and tibiae was short (below the mean) for gestational age, and the thorax was abnormally flat and narrow. The iliac wings were square-shaped. We concluded that the fetus had Jeune syndrome. The characteristic skeletal changes of Jeune syndrome are distinct enough at 17 weeks of fetal age to permit sonographic diagnosis

    Can remifentanil use in obstetrics be improved by optimal patient-controlled analgesia bolus timing?

    Get PDF
    Background The safety of patient-controlled i.v. analgesia (PCA) with remifentanil for obstetrical analgesia remains a matter of concern. The efficacy of remifentanil bolus application, that is, the coincidence between pain and remifentanil effect-site concentration, may be improved by forecasting contractions, but it is not known whether such a technique would also improve safety. Methods We recorded pain intensity during labour continuously using a handheld dynamometer in 43 parturients. Using these data, we compared different models in their ability to predict future contractions. In addition, we modelled remifentanil effect-site concentration using three simulated modes of bolus administration, with and without prediction of future contractions. Results The average duration of pain during contractions recorded by the dynamometer was 45 [14 standard deviation (sd)] s. The time interval between painful contractions was highly variable, with a mean of 151 (31 sd) s during the first and 154 (52 sd) s during the second recording. Using a simple algorithm (three-point moving average), the sd of the difference between predicted and observed inter-contraction intervals can be reduced from 0.95 to 0.79 min. However, the coincidence between remifentanil concentration and pain during contraction is not substantially improved when using these models to guide remifentanil bolus application. Conclusions Because of the large variability of inter-contraction intervals, the use of prediction models will not influence the mean remifentanil concentration in-between contractions. Using models predicting future contractions to improve the timing of remifentanil PCA bolus administration will not diminish the need of continuous clinical surveillance and other safety measure

    Innovations to Improve Lung Isolation Training for Thoracic Anesthesia: A Narrative Review.

    Get PDF
    A double-lumen tube or bronchial blocker positioning using flexible bronchoscopy for lung isolation and one-lung ventilation requires specific technical competencies. Training to acquire and retain such skills remains a challenge in thoracic anesthesia. Recent technological and innovative developments in the field of simulation have opened up exciting new horizons and possibilities. In this narrative review, we examine the latest development of existing training modalities while investigating, in particular, the use of emergent techniques such as virtual reality bronchoscopy simulation, virtual airway endoscopy, or the preoperative 3D printing of airways. The goal of this article is, therefore, to summarize the role of existing and future applications of training models/simulators and virtual reality simulators for training flexible bronchoscopy and lung isolation for thoracic anesthesia

    You can't see what you can't see: Experimental evidence for how much relevant information may be missed due to Google's Web search personalisation

    Full text link
    The influence of Web search personalisation on professional knowledge work is an understudied area. Here we investigate how public sector officials self-assess their dependency on the Google Web search engine, whether they are aware of the potential impact of algorithmic biases on their ability to retrieve all relevant information, and how much relevant information may actually be missed due to Web search personalisation. We find that the majority of participants in our experimental study are neither aware that there is a potential problem nor do they have a strategy to mitigate the risk of missing relevant information when performing online searches. Most significantly, we provide empirical evidence that up to 20% of relevant information may be missed due to Web search personalisation. This work has significant implications for Web research by public sector professionals, who should be provided with training about the potential algorithmic biases that may affect their judgments and decision making, as well as clear guidelines how to minimise the risk of missing relevant information.Comment: paper submitted to the 11th Intl. Conf. on Social Informatics; revision corrects error in interpretation of parameter Psi/p in RBO resulting from discrepancy between the documentation of the implementation in R (https://rdrr.io/bioc/gespeR/man/rbo.html) and the original definition (https://dl.acm.org/citation.cfm?id=1852106) as per 20/05/201

    An Extreme Mountain Ultra-Marathon Decreases the Cost of Uphill Walking and Running

    Get PDF
    Purpose: To examine the effects of the world's most challenging mountain ultramarathon (MUM, 330 km, cumulative elevation gain of +24,000 m) on the energy cost and kinematics of different uphill gaits. Methods: Before (PRE) and immediately after (POST) the competition, 19 male athletes performed three submaximal 5-min treadmill exercise trials in a randomized order: walking at 5 km.h-1, +20%; running at 6 km.h-1, +15%; and running at 8 km.h-1, +10%. During the three trials, energy cost was assessed using an indirect calorimetry system and spatiotemporal gait parameters were acquired with a floor-level high-density photoelectric cells system. Results: The average time of the study participants to complete the MUM was 129 h 43 min 48 s (range: 107 h 29 min 24 s to 144 h 21 min 0 s). Energy costs in walking (-11.5 +/- 5.5%, P < 0.001), as well as in the first (-7.2 +/- 3.1%, P = 0.01) and second (-7.0 +/- 3.9%, P = 0.02) running condition decreased between PRE and POST, with a reduction both in the heart rate (-11.3, -10.0, and -9.3%, respectively) and oxygen uptake only for the walking condition (-6.5%). No consistent and significant changes in the kinematics variables were detected (P-values from 0.10 to 0.96). Conclusion: Though fatigued after completing the MUM, the subjects were still able to maintain their uphill locomotion patterns noted at PRE. The decrease (improvement) in the energy costs was likely due to the prolonged and repetitive walking/running, reflecting a generic improvement in the mechanical efficiency of locomotion after ~130 h of uphill locomotion rather than constraints imposed by the activity on the musculoskeletal structure and function

    Multimodal Highlighting of Structural Abnormalities in Diabetic Rat and Human Corneas.

    Get PDF
    PURPOSE: This study aimed to highlight structural corneal changes in a model of type 2 diabetes, using in vivo corneal confocal microscopy (CCM). The abnormalities were also characterized by transmission electron microscopy (TEM) and second harmonic generation (SHG) microscopy in rat and human corneas. METHODS: Goto-Kakizaki (GK) rats were observed at age 12 weeks (n = 3) and 1 year (n = 6), and compared to age-matched controls. After in vivo CCM examination, TEM and SHG microscopy were used to characterize the ultrastructure and the three-dimensional organization of the abnormalities. Human corneas from diabetic (n = 3) and nondiabetic (n = 3) patients were also included in the study. RESULTS: In the basal epithelium of GK rats, CCM revealed focal hyper-reflective areas, and histology showed proliferative cells with irregular basement membrane. In the anterior stroma, extracellular matrix modifications were detected by CCM and confirmed in histology. In the Descemet's membrane periphery of all the diabetic corneas, hyper-reflective deposits were highlighted using CCM and characterized as long-spacing collagen fibrils by TEM. SHG microscopy revealed these deposits with high contrast, allowing specific detection in diabetic human and rat corneas without preparation and characterization of their three-dimensional organization. CONCLUSION: Pathologic findings were observed early in the development of diabetes in GK rats. Similar abnormalities have been found in corneas from diabetic patients. TRANSLATIONAL RELEVANCE: This multidisciplinary study highlights diabetes-induced corneal abnormalities in an animal model, but also in diabetic donors. This could constitute a potential early marker for diagnosis of hyperglycemia-induced tissue changes

    A first attempt to produce proteins from insects by means of a circular economy

    Get PDF
    The worldwide growing consumption of proteins to feed humans and animals has drawn a considerable amount of attention to insect rearing. Insects reared on organic wastes and used as feed for monogastric animals can reduce the environmental impact and increase the sustainability of meat/fish production. In this study, we designed an environmentally closed loop for food supply in which fruit and vegetable waste from markets became rearing substrate for Hermetia illucens (BSF\u2014 black soldier fly). A vegetable and fruit-based substrate was compared to a standard diet for Diptera in terms of larval growth, waste reduction index, and overall substrate degradation. Morphological analysis of insect organs was carried out to obtain indications about insect health. Processing steps such as drying and oil extraction from BSF were investigated. Nutritional and microbiological analyses confirmed the good quality of insects and meal. The meal was then used to produce fish feed and its suitability to this purpose was assessed using trout. Earthworms were grown on leftovers of BSF rearing in comparison to a standard substrate. Chemical analyses of vermicompost were performed. The present research demonstrates that insects can be used to reduce organic waste, increasing at the same time the sustainability of aquaculture and creating interesting by-products through the linked bio-system establishment

    The outer limiting membrane (OLM) revisited: clinical implications

    Get PDF
    PURPOSE: The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier. MATERIAL AND METHODS: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM. Proteome analyses were performed using immunohistochemistry on sections and flat-mounted retinas and western blotting on protein extracts obtained from laser microdissection of the photoreceptor layers. Semi-thin and ultrastructure analyses were also reported. RESULTS: In the rat retina, in the subapical region zonula occludens-1 (ZO-1), junction adhesion molecule (JAM), an atypical protein kinase C, is present and the OLM shows dense labeling of occludin, JAM, and ZO-1. The presence of occludin has been confirmed using western blot analysis of the microdissected OLM region. In diabetic rats, occludin expression is decreased and glial cells junctions are dissociated. In the monkey retina, occludin, JAM, and ZO-1 are also found in the OLM. Junction proteins have a specific distribution around cone photoreceptors and Müller glia. Ultrastructural analyses suggest that structures like tight junctions may exist between retinal glial Müller cells and photoreceptors. CONCLUSIONS: In the OLM, heterotypic junctions contain proteins from both adherent and tight junctions. Their structure suggests that tight junctions may exist in the OLM. Occludin is present in the OLM of the rat and monkey retina and it is decreased in diabetes. The OLM should be considered as part of the retinal barrier that can be disrupted in pathological conditions contributing to fluid accumulation in the macula
    corecore