8,704 research outputs found

    Redundancy approaches in bubble domain memories

    Get PDF
    Fabrication of integrated circuit chips to compensate for faulty memory elements is discussed. Procedure for testing chips to determine extent of redundancy and faults is described. Mathematical model to define operation is presented. Schematic circuit diagram of test equipment is provided

    Memory difference control of unknown unstable fixed points: Drifting parameter conditions and delayed measurement

    Full text link
    Difference control schemes for controlling unstable fixed points become important if the exact position of the fixed point is unavailable or moving due to drifting parameters. We propose a memory difference control method for stabilization of a priori unknown unstable fixed points by introducing a memory term. If the amplitude of the control applied in the previous time step is added to the present control signal, fixed points with arbitrary Lyapunov numbers can be controlled. This method is also extended to compensate arbitrary time steps of measurement delay. We show that our method stabilizes orbits of the Chua circuit where ordinary difference control fails.Comment: 5 pages, 8 figures. See also chao-dyn/9810029 (Phys. Rev. E 70, 056225) and nlin.CD/0204031 (Phys. Rev. E 70, 046205

    Robustness of predator-prey models for confinement regime transitions in fusion plasmas

    Get PDF
    Energy transport and confinement in tokamak fusion plasmas is usually determined by the coupled nonlinear interactions of small-scale drift turbulence and larger scale coherent nonlinear structures, such as zonal flows, together with free energy sources such as temperature gradients. Zero-dimensional models, designed to embody plausible physical narratives for these interactions, can help to identify the origin of enhanced energy confinement and of transitions between confinement regimes. A prime zero-dimensional paradigm is predator-prey or Lotka-Volterra. Here, we extend a successful three-variable (temperature gradient; microturbulence level; one class of coherent structure) model in this genre [M. A. Malkov and P. H. Diamond, Phys. Plasmas 16, 012504 (2009)], by adding a fourth variable representing a second class of coherent structure. This requires a fourth coupled nonlinear ordinary differential equation. We investigate the degree of invariance of the phenomenology generated by the model of Malkov and Diamond, given this additional physics. We study and compare the long-time behaviour of the three-equation and four-equation systems, their evolution towards the final state, and their attractive fixed points and limit cycles. We explore the sensitivity of paths to attractors. It is found that, for example, an attractive fixed point of the three-equation system can become a limit cycle of the four-equation system. Addressing these questions which we together refer to as “robustness” for convenience is particularly important for models which, as here, generate sharp transitions in the values of system variables which may replicate some key features of confinement transitions. Our results help to establish the robustness of the zero-dimensional model approach to capturing observed confinement phenomenology in tokamak fusion plasmas

    Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Full text link
    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. By the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of random nature, and a complete chromosome DNA sequence exhibits the properties of deterministic chaos.Comment: 4 pages, 5 figure

    Control of gradient-driven instabilities using shear Alfv\'en beat waves

    Full text link
    A new technique for manipulation and control of gradient-driven instabilities through nonlinear interaction with Alfv\'en waves in a laboratory plasma is presented. A narrow field-aligned density depletion is created in the Large Plasma Device (LAPD), resulting in coherent unstable fluctuations on the periphery of the depletion. Two independent kinetic Alfv\'en waves are launched along the depletion at separate frequencies, creating a nonlinear beat-wave response at or near the frequency of the original instability. When the beat-wave has sufficient amplitude, the original unstable mode is suppressed, leaving only the beat-wave response at a different frequency, generally at lower amplitude.Comment: Submitted for Publication in Physical Review Letters. Revision 2 reflects changes suggested by referees for PRL submission. One figure removed, several major changes to another figure, and a number of major and minor changes to the tex

    Avalanches in a Bose-Einstein condensate

    Get PDF
    Collisional avalanches are identified to be responsible for an 8-fold increase of the initial loss rate of a large 87-Rb condensate. We show that the collisional opacity of an ultra-cold gas exhibits a critical value. When exceeded, losses due to inelastic collisions are substantially enhanced. Under these circumstances, reaching the hydrodynamic regime in conventional BEC experiments is highly questionable.Comment: 4 pages, 2 figures, 1 tabl

    Multistability in nonlinear left-handed transmission lines

    Full text link
    Employing a nonlinear left-handed transmission line as a model system, we demonstrate experimentally the multi-stability phenomena predicted theoretically for microstructured left-handed metamaterials with a nonlinear response. We show that the bistability is associated with the period doubling which at higher power may result in chaotic dynamics of the transmission line

    Non-geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions

    Get PDF
    This paper is the second in a set of two investigating tilt-to-length (TTL) coupling. TTL describes the cross-coupling of angular or lateral jitter into an interferometric phase signal and is an important noise source in precision interferometers, including space gravitational wave detectors like LISA. We discussed in 10.1088/2040-8986/ac675e the TTL coupling effects originating from optical path length changes, i.e. geometric TTL coupling. Within this work, we focus on the wavefront and detector geometry dependent TTL coupling, called non-geometric TTL coupling, in the case of two interfering fundamental Gaussian beams. We characterise the coupling originating from the properties of the interfering beams, i.e. their absolute and relative angle at the detector, their relative offset and the individual beam parameters. Furthermore, we discuss the dependency of the TTL coupling on the geometry of the detecting photodiode. Wherever possible, we provide analytical expressions for the expected TTL coupling effects. We investigate the non-geometric coupling effects originating from beam walk due to the angular or lateral jitter of a mirror or a receiving system. These effects are directly compared with the corresponding detected optical path length changes in 10.1088/2040-8986/ac675e. Both together provide the total interferometric readout. We discuss in which cases the geometric and non-geometric TTL effects cancel one-another. Additionally, we list linear TTL contributions that can be used to counteract other TTL effects. Altogether, our results provide key knowledge to minimise the total TTL coupling noise in experiments by design or realignment

    Triggering up states in all-to-all coupled neurons

    Full text link
    Slow-wave sleep in mammalians is characterized by a change of large-scale cortical activity currently paraphrased as cortical Up/Down states. A recent experiment demonstrated a bistable collective behaviour in ferret slices, with the remarkable property that the Up states can be switched on and off with pulses, or excitations, of same polarity; whereby the effect of the second pulse significantly depends on the time interval between the pulses. Here we present a simple time discrete model of a neural network that exhibits this type of behaviour, as well as quantitatively reproduces the time-dependence found in the experiments.Comment: epl Europhysics Letters, accepted (2010
    • …
    corecore