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Abstract. This paper is the second in a set of two investigating tilt-to-length

(TTL) coupling. TTL describes the cross-coupling of angular or lateral jitter

into an interferometric phase signal and is an important noise source in precision

interferometers, including space gravitational wave detectors like LISA. We discussed

in [1] the TTL coupling effects originating from optical path length changes, i.e.

geometric TTL coupling. Within this work, we focus on the wavefront and detector

geometry dependent TTL coupling, called non-geometric TTL coupling, in the case of

two interfering fundamental Gaussian beams. We characterise the coupling originating

from the properties of the interfering beams, i.e. their absolute and relative angle at

the detector, their relative offset and the individual beam parameters. Furthermore,

we discuss the dependency of the TTL coupling on the geometry of the detecting

photodiode. Wherever possible, we provide analytical expressions for the expected

TTL coupling effects. We investigate the non-geometric coupling effects originating

from beam walk due to the angular or lateral jitter of a mirror or a receiving system.

These effects are directly compared with the corresponding detected optical path

length changes in [1]. Both together provide the total interferometric readout. We

discuss in which cases the geometric and non-geometric TTL effects cancel one-another.

Additionally, we list linear TTL contributions that can be used to counteract other

TTL effects. Altogether, our results provide key knowledge to minimise the total TTL

coupling noise in experiments by design or realignment.

Keywords : tilt-to-length coupling, optical cross-talk, wavefront properties, interferomet-

ric noise sources, laser interferometry, space interferometry, LISA

1. Introduction

Tilt-to-Length (TTL) coupling is a common type of noise in precision laser

interferometers. It describes the unwanted coupling of angular or lateral jitter into

the phase readout. Within this paper, the jittering object can either be a reflective
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component or a receiving system, i.e. an optical bench or a satellite that is receiving

the beam of interest. The TTL coupling from a jittering transmitter is not discussed

here.

In general, TTL coupling originates, on the one hand, from the fact that the optical

distance along the beam axis is lengthened or shortened by the jitter. This results in

changes of the optical path length difference (OPD) of the beam axis and has been

discussed in detail in [1]. On the other hand, the jitter changes the interference pattern.

These changes depend on the wavefront properties and originate from alterations in the

beam alignment with respect to the detector surface and with respect to each other.

Additionally, beam displacements on the detector surface can result in beam clipping

by the boundaries of the detector surface. All these effects contribute to the final

interferometric output signal. After all, an interferometer does not directly sense an

OPD but rather a phase difference on the detector surface. This is typically converted

to a length readout signal, the longitudinal path length sensing (LPS) signal, by dividing

the phase by the wavenumber k [2, 3]. We categorise these LPS changes as non-geometric

effects.

Although it is often sufficient to focus on the geometric TTL effects, there are cases

where the non-geometric TTL effects become equal or even dominant noise contributors.

One example of this are setups in which the centre of rotation is located in the beam’s

point of incidence on the detector, which results in the suppression of the geometric

coupling effects. This is implemented in the LISA mission [4, 5] by imaging systems [6, 2]

reducing the geometric jitter coupling of the receiving spacecraft. Another important

example of dominant non-geometric coupling is the TTL coupling of the jitter of a

transmitting spacecraft in the LISA mission into the long arm interferometer readout,

computed, for instance, in [7, 8, 9], which we do not consider in this work. More general

examples that are independent of a specific mission have been introduced in [1, 3, 10],

and are further discussed within this paper.

TTL coupling has been investigated for different missions in various publications.

It is discussed for the LISA long arm interferometer in [2, 7, 8, 9], for the LISA

test mass interferometer in [11], and for the GRACE-FO mission in [12], and for the

LISA Pathfinder mission in [13, 14, 15, 16]. Here, we provide a very general overview

of non-geometric TTL effects applicable to precision interferometers, including space

interferometers. The work presented here is fundamental and not limited to a dedicated

mission or project.

Within this work, we focus on the local interferometric effects and assume

fundamental Gaussian beams. We briefly repeat in Sec. 2 the mechanisms inducing

TTL coupling with focus on the resulting shift of a laser beam’s point of incidence at the

detector surface. This beam walk on the detector changes the interference pattern and,

therefore, couples into the signal. The non-geometric coupling effects are then described

analytically in Sec. 3. In particular, we categorise the non-geometric TTL effects into

linear, quadratic or mixed effects. We divide our analysis into the investigation of

wavefront and detector related coupling effects. We summarise all non-geometric effects
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Figure 1. Beam walk induced by two TTL mechanisms in the case of mirror rotations.

Left figure: The lever arm mechanism. Shown is the displacement xilever of the point

of incidence from PPD,0 to PPD,1 due to a tilt ϕ of the mirror around the reflection

point Prefl,0. The displacement scales with the distance dlever of the photodiode (PD)

from the mirror, which is defined along the nominal beam axis (case ϕ = 0). Right

figure: The piston mechanism. The centre of rotation is shifted with respect to the

reflection point (longitudinally by dlong and laterally by dlat, both are positive here).

This causes a beam walk xipiston from point PPD,1 to point PPD additionally to the

lever arm beam walk. The dashed line corresponds to the beam path due to the lever

arm effect. In both figures, β marks the beam’s angle of incidence at the mirror and

ϕPD denotes the rotation of the PD surface with respect to the nominal beam axis.

Arrows pointing clockwise indicate negative angles.

in Sec. 4 and list them for a typical special case. In Sec. 5, we extend this summary to

the full LPS signal. There, we combine the results from [1] and this work to discuss the

total signal. Finally we give a conclusion in Sec. 6.

2. Non-geometric TTL coupling in different systems

TTL coupling occurs in different types of precision interferometer. We group these

interferometers in two different categories, just as described in [1]. The first category

of interferometers comprises systems where the TTL originates from an angularly or

laterally jittering mirror. Most laboratory systems, as well as the LISA Pathfinder

interferometers [17, 13, 16] and LISA test mass interferometer [4, 5] fall into this category.

The second category covers systems, where the TTL originates from the jitter of a system

relative to a static beam. This occurs, for instance, if a spacecraft is jittering relative

to the laser beam it is receiving from a far spacecraft, like in the GRACE-FO mission

[18, 19] and in the LISA long-arm interferometers [4, 5].

We now assume a mirror that is subject to angular jitter. As one can see on
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the left-hand side of Fig. 1, the path along which the reflected beam propagates to

the photodiode is then angle-dependent and deviates from the nominal path, i.e. the

path for ϕ = 0. This affects the optical path length (OPL) of the beam axis but

also the point of incidence at the detector, i.e. the point at which the beam axis hits

the photodiode surface. We refer to this behaviour as ‘beam walk’ since the beam’s

point of incidence walks along the surface for increasing tilt angles. Like the angular

alignment of the interfering beams at the detector, the offset between both points of

incidence significantly affects the interference pattern. Correspondingly, the beam walk

is an important contributor to the entire non-geometric TTL coupling. The beam walk

depicted in Fig. 1 originates from two different mechanisms: the lever arm and the

piston mechanism. The changes of the beam axis lengths due to these mechanisms have

separately been discussed in [1].

The lever arm mechanism (left-hand side of Fig. 1) describes the angular jitter of

a mirror surface around the beam reflection point Prefl,0. The beam then follows the

light red path and hits the detector in an angle-dependent point PPD,1. The distance

xilever between the original point of incidence PPD,0 and PPD,1 describes the lever arm

induced beam walk. The change caused by this beam walk in the LPS signal is the

non-geometric lever arm effect.

The piston mechanism (right-hand side of Fig. 1) describes all additional beam

path changes originating from a displacement of the mirror’s centre of rotation with

respect to the reflection point. In that case, the mirror surface would shift in or out of

the beam path, which simultaneously shifts the reflection point from Prefl,0 to PPD and

the beam’s point of incidence at the detector from PPD,1 to point PPD. The LPS signal

change caused by the beam walk on the photodiode is the non-geometric piston effect.

Let us now consider the second category of interferometers with an angularly

jittering receiving system. There, a jittering optical bench receives a static beam which

is then incident on a photodiode that jitters together with the optical bench and all

other components in the system. Thereby, the detector surface moves into or out of the

received beam, which alters the optical path length and, thereby, introduces geometric

TTL coupling. Simultaneously it changes the wavefront properties on the photodiode

and causes beam walk, which again results in non-geometric TTL coupling. The beam

walk is illustrated in Fig. 2, where PPD,0 was the the nominal point of incidence, while

the beam impinges in point PPD,1 if the system is rotated by ϕRS.

The non-geometric TTL coupling of both a jittering mirror and a jittering receiver

are discussed in detail in the following.

3. Non-geometric TTL coupling effects

There are different aspects that affect the non-geometric TTL coupling. We

systematically analyse these aspects within this section. We start by introducing the

LPS signal in detail and discuss why and how it deviates from the OPD (Sec. 3.1).

In Sec. 3.2 we derive non-geometric TTL effects that relate to the properties of the
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Figure 2. TTL coupling due to angular jitter of the system (grey open box) with

respect to the incoming beam (red trace). The geometric TTL effect is visible by

the distance change along the beam axis when the photodiode (PD) moves into the

received beam. Non-geometric effects occur, for instance, due to the change of the

beam’s incidence point on the detector, which moves from the green point in the

centre of the diode, to a yellow point PPD,1 shifted from this centre. The distances

dlong and dlat define the longitudinal and lateral distances between the nominal point

of incidence PPD,0 and the centre of rotation. Both are positive in this figure.

interfering wavefronts. Finally, we discuss in Sec. 3.3 effects that relate to the detector

geometry, i.e. whether, for instance, a large single element photodiode is used or a small

quadrant photodiode.

3.1. Introduction: LPS and OPD

Throughout this paper, we are assuming the case of interfering Gaussian beams, which

can be described according to [3] by

E(rb, zb, t) ∝
1

w(zb)
exp

(
−r2

b

w2(zb)

)
·

exp

(
iΩt− i

[
kr2

b

2R(zb)
− η(zb) + kOPLb

])
, (1)

where all variable definitions are listed in Tab. 1. The lower index b of Eq. (1) stands

for ‘beam’ and is, therefore, substituted in Tab. 1 by either m or r referring to a

measurement or reference beam respectively. The measurement beam is the beam of

interest that either reflects from the mirror in the case of a jittering mirror or is received

from a distant optical bench in the case of a jittering receiving system. This beam

interferes with a second beam, the reference beam, on the detector. This reference

beam is assumed to be static with respect to the detector surface.

For two interfering beams, the detected power can be derived via the integral of

the squared absolute sum of their electric fields over the photodiode surface S:

P ∝
∫
dS ‖Em + Er‖2 (2)
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Table 1. List of physical parameters.

parameter description characterising eq.

k wave number common for both beams k = 2π/λ

λ wavelength

Ωm,r angular frequency of meas. / ref. beam Ω = ck = 2πf

∆Ω angular heterodyne frequency ∆Ω = |Ωm − Ωr|
zR,m,r Rayleigh range of meas. / ref. beam zR = π w2

0/λ

w0,m,r waist size of meas. / ref. beam w0 =
√
zR λ/π

wm,r laser spot size on detector w = w0

√
1 + (z/zR)2

Rm,r radius of curvature of meas. / ref. beam R = z (1 + (zR/z)
2)

ηm,r Gouy phase of meas. / ref. beam η = arctan(z/zR)

Pm,r power of meas. / ref. beam

zm,r distance from waist in direction of propagation for meas. / ref.

beam

sm,r propagation distance of meas. / ref. beam

rm,r cylindrical coordinate of meas. / ref. beam r =
√
x2 + y2

=

∫
dS
(
‖Em‖2 + ‖Er‖2 + EmE

∗
r + E∗

mEr

)
. (3)

The first two summands describe the detected power of the individual beams. The third

and the forth summand, evaluated for t = 0, are often referred to as complex amplitudes

a of the beat note. The argument of this complex amplitude is then the interferometric

phase φ [3], e.g.

φ = arg(a) = arg

(∫
dS EmE

∗
r |t=0

)
, (4)

sensed by the corresponding interferometric readout system. This description is equally

valid for homodyne and heterodyne interferometers.

The longitudinal path length sensing (LPS) signal is this phase converted to a

length by a division by the wavenumber k:

LPS =
1

k
φ . (5)

This derivation is valid if the entire interference pattern is detected with homogenous

sensitivity, so for single element photodiodes (SEPDs), which are sufficiently large to

detect the complete incident wavefronts. We will extend this for quadrant photodiodes

(QPDs) in Sec. 3.3.

The LPS represents the actual displacement measurement of interferometers.

However, it is more complicated to compute both numerically and analytically than

the OPD. The OPD, on the other hand, can be derived from simple geometry but

gives only information along the beam axis. Because each OPL is defined along the

corresponding beam axis, the OPD is (approximately) constant in the surface integral

of Eq. (4). It can therefore be drawn out of this integral:

φ = arg
[

exp(−ik(OPLm −OPLr)) ·
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dS(EmE

∗
r )|OPLm,r=t=0

)]
(6)

= arg
[

exp(ikOPD)

(∫
dS(EmE

∗
r )|OPLm,r=t=0

)]
(7)

= kOPD + arg
[(∫

dS(EmE
∗
r )|OPLm,r=t=0

)]
. (8)

Strictly speaking, this derivation only holds for beams of normal incidence. In the case

of tilted beams, an additional microscopic phase needs to be considered when the OPD

is taken out of the integral [3]. Yet, the OPD can be separated in either case from the

non-geometric phase (second summand in Eq. (8)). Thus, the LPS can be split into the

OPD and a non-geometric contribution LPSng:

LPS = OPD + LPSng . (9)

The non-geometric part LPSng contains then all contributions related to the wavefront

properties (i.e. the involved radii of curvature Rb, Gouy phases ηb and spot sizes wb).

Additionally, it contains clipping effects if the detector surface S is not large enough

to receive the full extent of the impinging wavefronts. A more detailed description

about the numerical implementation of these equations and possibly needed coordinate

transformation is given in [3]. The LPS signal measured in a laboratory experiment

includes additional effects that are not included in the presented equations, such as

from the non-uniformity of the photodiode’s responsivity.

3.1.1. Derivation of LPSng in analytical and in numerical simulations In numerical

simulations that allow both a computation of the LPS as well as the OPD (this is for

instance the case in IfoCAD [3, 20]), one can naturally derive the LPSng simply from

the difference

LPSng = LPS−OPD . (10)

In analytical derivations, this process would be significantly more complex than

necessary. In the analytic and numeric approach, the OPD can be derived as described

in [1] via the difference between the OPLs of the measurement beam in the tilted and the

nominal case. However, the computation of the non-geometric TTL contributions can

be simplified by adapting the simulation to directly exclude OPL changes and making

them zero by design. In that case, the LPS signal in Eq. (10) is fully non-geometric

and can be derived analytically using the procedure described in [21] summarised in the

following:

To account for the tilt angle of each of the beams b and the rotation axis defining

a rotation matrix Mrot,b, as well as the location of the centre of rotation ppivot,b, we first

perform a coordinate transformation in Eq. (1). The new coordinates are defined with

respect to the photodiode centre, i.e. z = 0. xb
yb

∆OPLb

 = Mrot,b


xbyb

0

− ppivot,b

+

ppivot,b −

xi,byi,b
0


 (11)
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The beams are then superimposed on the photodiode, and the overlap integral in Eq. (4)

and the resulting LPS signals are analytically evaluated. In the analytical evaluation of

the overlap integral, it is assumed that the beam parameters do not vary for different

detector points. This simplifying assumption is not necessary in numerical computations

using IfoCAD.

For the computation of the non-geometric signal contribution only, we substitute

the pivot point ppivot,b by the beam’s point of incidence (xim, yim, 0) on the photodiode

surface. By this replacement, all OPD contributions become zero and, therefore,

LPS = LPSng.

Note, that for cases where the pivot is not actually on the detector, a beam walk

occurs on the photodiode. That means, the incidence point (xim, yim) varies during the

rotation, i.e. it is angle-dependent. This angular dependency will be taken into account

in the computation of LPSng when the pivot is set to be on the diode. We will show

this in more detail below in Sec. 3.2.2.

In general, we reduce the complexity of the analytic equations by neglecting the

angular dependency of beam parameters as a higher-order contribution.

We have used this procedure for the derivation of all LPSng equations below.

3.2. Wavefront related TTL coupling effects: case of ideal detectors

The interferometric phase depends on the one hand on the beam properties (integrand

in Eq. (4)) and on the other hand on the detector geometry (domain of integration

in Eq. (4)). In this section, we investigate how the beam properties, i.e. their beam

parameters, affect the phase signal and show how this wavefront dependent TTL

coupling depends on the point of incidence at the detector. To differentiate between the

wavefront related TTL effects discussed in this section and the detector related TTL

effects that are discussed in Sec. 3.3, we assume in our analytic investigations here that

the detectors are ideal infinitely large single element photodiodes (SEPD).

We start with analysing the TTL coupling in the most simplified setup of two

perfectly identical fundamental Gaussian beams and the measurement beam rotating

around its point of incidence on the detector. We distinguish the case where the beams

overlap perfectly (Sec. 3.2.1) and the case of a laterally shifted measurement beam

Sec. 3.2.2. This is extended in Sec. 3.2.3 for rotations around an arbitrary point,

thus including a beam walk on the detector. Such a beam walk potentially breaks

the symmetry between the wavefronts of the incoming beams and thereby affects the

TTL coupling. We therefore also investigate the TTL coupling induced by the beam

walk due to mirror rotations (Sec. 3.2.4). Additionally, refractions of angularly jittering

beams at transmissive components leads to a changing beam walk (Sec. 3.2.5). Since

identical Gaussian beams are idealisations impossible to achieve in reality, we further

discuss TTL effects induced by beams having unequal beam parameters in Sec. 3.2.6.

Any deviation from the wavefront or intensity shape will alter the balance between

wavefronts and thus generate cross-coupling. This is discussed in Sec. 3.2.7.



Non-geometric tilt-to-length coupling in precision interferometry 9

 

Figure 3. Simplified illustration for the vanishing TTL in case of identical Gaussian

beams rotating around their joint point of incidence on the photodiode. Shown are

the superposition of two wavefronts in the nominal untilted case (upper sketch with

superimposing blue and red wavefronts) and the case when the measurement wavefront

is tilted around the centre of the reference wavefront (lower sketch). The local phase

differences between the wavefronts are indicated by φi and are illustrated by the

directions of the black arrows (vector representations of the local complex amplitudes).

The phase information at different positions on the detector is weighted with the

amplitude of the total field (“overlap”) resulting from the superposition of the two

interfering beams. The phase sum φsum represents the integrated phase over the entire

detector. This φsum is indicated by the direction of the green arrows on the right-hand

side. Due to the given symmetry, φsum is unaffected by the rotation, which shows that

there is no non-geometric TTL, i.e. LPSng = 0.

3.2.1. Identical Gaussian beams rotating around an identical point of incidence on PD

We now assume the most simple case of two identical fundamental Gaussian beams

rotating around an identical point of incidence. For a rotation angle of ϕm = 0 both

beams and beam paths are identical and they perfectly overlap each other. In the

following, the measurement beam gets rotated around its shared incidence point on

the detector. The beam’s geometric path length does not change, giving here a pure

non-geometric path length readout.

In the following, we will derive the TTL coupling in this particular case first

qualitatively via a graphic and then analytically.

The graphical derivation of TTL coupling is based on an approximation of Eq. (4).

In the process, we estimate the resulting phase visually from graphical illustrations. We

start with the mathematical background of this approach. Therefore, we first divide the

surface integral in Eq. (4) into n segments Si. The complex amplitude a then equals
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the sum over the complex amplitudes ai of the segments Si

a =
n∑

i=1

ai (12)

ai ∝
∫
dSi(EmE

∗
r )|t=0 . (13)

The expected interferometric phase φ is then given by the argument of the sum of all

complex amplitudes:

φ = arg(a) = arg

(
n∑

i=1

ai

)
. (14)

In our graphical approach, we examine a small number of complex amplitudes ai
visually from the differences of the interfering wavefronts. This is illustrated in Fig. 3

showing the wavefronts of two interfering beams in the nominal non-tilted case and for an

arbitrarily chosen tilt angle ϕm. Here, the vector representations of the complex valued

amplitudes ai are given by the black arrows. Their directions define the local phase

differences φi. In the figure, these are estimated from the difference (averaged difference

within a certain segment) of the phase profiles, i.e. the blue and red wavefronts. Further,

the lengths of the arrows are defined by the Gaussian amplitude profile of the interference

pattern, qualitatively described by the yellow area. In accordance to Eq. (14), the full

complex amplitude equals the sum of the black arrows. The interferometric phase φ

then equals the angle of this vector sum.

We now evaluate the total phases for the case shown in Fig. 3: While the local

phase differences are all zero in the no-tilted case, a tilt of the measurement beam

(red wavefront) changes the directions but not the lengths of the complex amplitude

vectors. Due to the given symmetry, the arrows on the right- and left-hand sides are

antisymmetric, which results again in a total phase of zero, i.e. the same value as in the

non-tilted case, showing that no TTL coupling will occur.

We confirm this graphical derivation by deriving the LPS signal analytically using

the methods described in [3, 21]. Therefore, we evaluate Eq. (4) for the electrical fields

of identical Gaussian beams, i.e. beams with the same Rayleigh ranges zRm = zRr,

distances from waist zm = zr and incidence points xim = xir at the detector. For small

beam tilts ϕm we find

LPSSEPD,2D
ng ≈ − zm

4k zRm

(
ϕ2
m − 2ϕmϕPD

)
(15)

which corresponds to results from [10] but additionally describes the contribution of a

small tilt ϕPD of the detector surface.

The term we find in the analytical derivation is assumed to originate from the

simplifying assumptions made in the computation of the LPS signal (see Sec. 3.1.1).

However, Eq. (15) evaluates as numerical zero for small photodiode tilts |ϕPD| .
200µrad and common parameters, e.g. |ϕm| . 200µrad, λ = 1064 nm, zm ∼ 1 m,

zRm ∼ 1 m. Thus we can conclude that there would be no TTL coupling in the case of

two identical Gaussian beams with one rotating around the shared point of incidence.
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CD
AB

beam

PD

Figure 4. Coordinate system of a single element (black circle) or quadrant (grey

quarter circles) photodiode, respectively. The four quadrants of the quadrant

photodiode are labelled A, B, C and D.

3.2.2. Laterally shifted identical Gaussian beams By assuming a perfect overlap of both

interfering beams for ϕm = 0 as well as a centre of rotation positioned exactly at the

point of incidence, we considered a very special case in Sec. 3.2.1. We now relax these

conditions step-wise. Within this subsection, we investigate how the TTL coupling

changes if the two beams are laterally shifted with respect to each other. Let xim, xir
describe the beams’ points of incidence with respect to a hypothetical centre of the

infinitely large SEPD (see Fig. 4 for the coordinate system). The measurement beam’s

centre of rotation is now placed in this new point, i.e. it jitters angularly around the

point defined by xim.

While without beam offsets, the amplitude of the overlap is symmetric with respect

to the wavefronts, the symmetry axes of the overlap and the interfering beams differ

from each other once offsets of the detection points are introduced. An offset of one

beam and the resulting imbalance of the overlap will favour one side and thus generate

cross-coupling, as demonstrated in Fig. 5.

We compute this case again analytically as described in 3.2.1 and find

LPSSEPD,2D
ng ≈ 1

2
(xim − xir) [(ϕm − ϕPD) + (ϕr − ϕPD)]

+

[
(xim − xir)2 zm

8z2
Rm

− zm
4k zRm

] (
ϕ2
m − 2ϕmϕPD

)
(16)

or in a three-dimensional case neglecting detector angles

LPSSEPD,3D
ng ≈ 1

2
(xim − xir)(ϕm + ϕr)

− 1

2
(yim − yir)(ηm + ηr)
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Figure 5. TTL coupling for a laterally shifted measurement beam (red), which rotates

around its incidence point on the photodiode. The phase information at different

positions on the detector is weighted with the overlap (product of the electric field

amplitudes) between the two interfering beams. For non-tilted beams, the local phase

differences cancel in the total phase (i.e. the green arrow points upwards). For a tilted

measurement beam, this is no longer the case (i.e. the green arrow is rotated): the pairs

of local phase differences φi, i ∈ {1, ..., 5} distributed around the symmetry axis of the

amplitude profile do not cancel each other. Consequently, the total phase changes, i.e.

the sum of the paired local phase differences φi and the non-zero phase difference at

the symmetry point of the amplitude profile at the photodiode surface φ∗ is different

than in the non-tilted case. This is caused by a displacement of the symmetry axis

(dashed grey line) of the differential wavefront (indicated by the vertical lines between

the blue and red wavefront) with respect to the symmetry axis of the amplitude profile

of the total field.

+

[
(xim − xir)2 zm

8z2
Rm

− zm
4k zRm

]
ϕ2
m

+

[
(yim − yir)2 zm

8z2
Rm

− zm
4k zRm

]
η2
m

− zm
z2
Rm + z2

m

ximyim ϕmηm . (17)

Here, yim, yir denote the vertical displacement of the points of incidence with respect to

the hypothetical centre of the photodiode, and ηm the measurement beam’s pitch angle.

Both equations, Eq. (16) and Eq. (17), are series expanded up to second-order in all

angles. In this expansion, we neglected all constant second-order angles (i.e. (ϕr−ϕPD)2

and ϕ2
PD) but kept all linear constants in preparation for Sec. 3.2.3 and Sec. 3.2.4.

As previously discussed in Sec. 3.2.1, the terms in Eqs. (16) and (17) which include

a division by the wavenumber k are negligible. The same applies in usual laboratory
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Figure 6. For two beams that are shifted with respect to each other and are rotated

by the same angle but in opposite directions, i.e. ϕm = −ϕr, the amplitude profile is

symmetric and the local phase differences cancel each other.

setups for the terms with quadratic offsets between the points of incidence on the

detector because commonly used photodiodes are small and so are the spot sizes of

the interfering beams. To find a high contrast of the signal, xim − xir must, therefore,

be small, i.e. at most of the order of 10−5 m. We can, therefore, usually reduce Eqs. (16)

and (17) to

LPSSEPD,2D
ng ≈

[
1

2
(xim − xir)

]
[(ϕm − ϕPD) + (ϕr − ϕPD)] (18)

LPSSEPD,3D
ng ≈ 1

2
(xim − xir)(ϕm + ϕr)

− 1

2
(yim − yir)(ηm + ηr) . (19)

It follows from Eq. (18) that we would measure no TTL coupling if the measurement

and the reference beam are tilted by inverse angles, i.e. ϕm = −ϕr, and ϕPD = 0. This

cancellation of the signal in the case of inverse angles is illustrated in Fig. 6. This

shows that not the differential but the absolute alignment of both beams couples into

the signal.

Finally, taking into account both xim and yim are constant, we simplify Eq. (19) to

LPSSEPD,3D
ng ≈ 1

2
(xim − xir)ϕm −

1

2
(yim − yir) ηm . (20)

A constant lateral or vertical beam offset, therefore, generates primarily a first order

TTL coupling, see Fig. 7.
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Figure 7. Simulated path length signal in the scenario with two identical Gaussian

beams that only differ in their nominal points of incidence at the detector xim. This

describes a shift of the axis of the measurement beam by xim, while having the centre

of rotation at the same longitudinal distance from the beam’s point of incidence. We

find significant linear TTL coupling. The simulation parameters were: waist radius

w0 = 1 mm, nominal points of incidence xir = 0 and xim = { -0.2 mm, -0.1 mm, 0 mm,

0.1 mm, 0.2 mm}, centre of rotation at point of incidence, and detector radius 100 mm.

3.2.3. System jitter with arbitrary pivot and identical Gaussian beams Within this

section, we consider the angular jitter of a receiving system. As we have shown in Sec. 2,

the point of incidence of the measurement beam is not static in this case. Instead, the

the offset of the point of rotation from the nominal point of incidence causes a beam

walk on the detector surface, i.e. the measurement beam’s incidence point shifts during

the rotation: (xim, yim) = (xim(ϕm, ηm), yim(ϕm, ηm)). For small angles the beam walk

can be linearised, such that cross-plane dependencies are being neglected, resulting in

(xim(ϕm), yim(ηm)). Thereby, the centre of rotation considered in the derivation of the

non-geometric TTL signal becomes angle-dependent.

In the particular case of an angularly jittering receiver, the pivot point is shifted

longitudinally by dlong, laterally by dlat, and vertically by dvert with respect to the point

of incidence (xim, yim).

In a two-dimensional case, the beam’s horizontal offset xim on the detector can be

computed geometrically and we find

x2D
im,RS = xim,0 + {dlong sin(ϕRS)− dlat [sec(ϕRS)− 1]}

· cos(ϕRS) sec(ϕRS − ϕPD) (21)

≈ xim,0 + dlong ϕRS −
1

2
dlat ϕ

2
RS , (22)

where xim,0 is the measurement beam’s initial offset, i.e. its offset at ϕRS = 0. We can

now substitute xim in (18) by Eq. (22), using ϕm → −ϕRS and neglecting all additive
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constants we find

LPSSEPD,2D
ng,RS ≈ −1

2
(xim,0 − xir)ϕRS

+

[
1

2
dlong ϕRS

]
[−ϕRS + ϕr − 2ϕPD] . (23)

We find, that only the linear beam walk terms appear in the second-order expression

(23). Extending our analysis to a three-dimensional case, we find for the linearised beam

walk

x3D
im,RS ≈ xim,0 + dlong ϕRS , (24)

y3D
im,RS ≈ yim,0 − dlong ηRS . (25)

Inserting this into Eq. (19), we find the additional non-geometric TTL contribution

originating from the arbitrary pivot location:

LPSSEPD,3D
ng,RS ≈ −1

2
(xim,0 − xir)ϕRS +

1

2
(yim,0 − yir)ηRS

− 1

2
dlong ϕRS(ϕRS − ϕr)

− 1

2
dlong ηRS(ηRS − ηr) . (26)

Comparing Eq. (26) and Eq. (20) we see that a rotation around a pivot that is shifted

longitudinally by dlong against the incidence point (xim, yim) of the measurement beam on

the detector, results in additional first- and second-order non-geometric TTL coupling.

Lateral displacement of the centre of rotation affects the beam walk only as a secondary

effect (Eq. (22)). We neglected it in all further equations as higher than second-order

effect due to xim being multiplied to small angles in the computation of the non-

geometric coupling via Eqs. (18) and (19). Therefore, the lateral displacement dlat

of the centre of rotation with respect to the nominal beam axis does not affect the

non-geometric TTL coupling for small angles.

Lateral jitter coupling So far, we have only investigated the angular jitter of the

receiver. We now consider the case of a laterally jittering spacecraft which is assumed

to be angularly misaligned with respect to the incoming beam.

We define the lateral jitter of a receiver as the jitter along the y- or z-axis of

the receiver, see Fig. 2. Due to this jitter, the measurement beam would get shifted

along the detector surface and, therefore, the offset xim of the point of detection of the

measurement beam with respect to the detector centre becomes time-dependent. We

describe the corresponding TTL coupling by substituting ϕm → −ϕRS in Eq. (18) and

by neglecting all terms that are constant in the case of lateral jitter coupling:

LPSSEPD,2D
ng,RS ≈ 1

2
xim(t) [−(ϕRS + ϕPD) + (ϕr − ϕPD)] . (27)

Assuming an untilted detector, the variation of the incidence point xim(t) on the detector

would directly correspond to the lateral jitter yRS(t) of the receiving system, i.e.

LPSSEPD,2D
ng,RS ≈ 1

2
yRS(t) (−ϕRS + ϕr) . (28)
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If, on the other hand, the detector is tilted with respect to the internal receiver

coordinate system, the beam walk corresponds to the jitter via

xim ≈ xim,0 + yRS(t)

[
1 +

1

2

(
2ϕRS ϕPD + ϕ2

PD

)]
. (29)

However, we have seen previously that second-order changes of the beam walk do only

couple as higher-order terms into the non-geometric signal. Therefore, we find

LPSSEPD,2D
ng,RS ≈ 1

2
yRS(t) [−(ϕRS + ϕPD) + (ϕr − ϕPD)] . (30)

Eqs. (28) and (30) yield strong linear TTL coupling depending on the alignment of the

interfering beams with respect to the detector surface.

LPS signal as sum of geometric and non-geometric effects We now use the equations

above to reanalyse a setup previously described in [1, cf Fig. 9]. There, a system rotation

with an arbitrary longitudinal offset of the pivot point, but no lateral offset was assumed.

Both beams were in the nominal case aligned to each other, i.e. xim,0 = xir and ϕr = 0,

and we assumed no photodiode tilt, i.e. ϕPD = 0. Inserting this into Eq. (18), we get

LPSSEPD,2D
ng,RS ≈ − 1

2
dlongϕ

2
RS . (31)

By comparing Eq. (31) with the corresponding OPD [1, cf Eq. (43)], we find that both

are equal for a rotation of the system around a longitudinally displaced pivot but have

an inverted sign. Thus, the angular jitter coupling for a longitudinally displaced centre

of rotation cancels:

LPSSEPD,2D
RS = OPD2D

RS + LPSSEPD,2D
ng,RS (32)

≈ 0 . (33)

This confirms the observations found in numerical simulations [1, 10]. Considering

instead a laterally jittering receiving system with a constant angular misalignment

(ϕRS 6= 0), we find residual TTL coupling in the complete LPS signal. Let us, for

simplicity, assume a nominally aligned reference beam and detector, i.e. ϕr = ϕPD = 0,

and no beam offsets on the detector, i.e. xim,0 = xir = 0. Under these assumptions,

Eq. (28) reduces to

LPSSEPD,2D
ng,RS ≈ −1

2
yRS ϕRS . (34)

While seeing a significant non-geometric coupling for lateral jitter, there is no geometric

correspondence: If the receiver jitters parallelly to its detector surface, the length of the

received beam does not change [1, cf Eq. (38)]. Thus, the lateral TTL coupling here is

fully described by the non-geometric coupling,

LPSSEPD,2D
RS = LPSSEPD,2D

ng,RS ≈ −1

2
yRS ϕRS , (35)

which yields a strong linear coupling.



Non-geometric tilt-to-length coupling in precision interferometry 17

3.2.4. Reflecting mirror with arbitrary pivot and identical Gaussian beams We now

consider again the case of a mirror with angular jitter as depicted in Fig. 1 and an

arbitrary pivot location. The offset xim then depends on the mirror angle ϕ, the lever

arm dlever as well as the longitudinal and lateral displacements between the reflection

point and the centre of rotation dlong, dlat:

x2D
im,MR ≈ xim,0 − 2 [dlever + dlat sin(β)]ϕ

+ [2dlat cos(β) + dlong sin(β)]ϕ2 . (36)

We can now substitute in Eq. (18) ϕm → 2ϕ and xim by Eq. (36) and find

LPSSEPD,2D
ng,MR ≈ (xim,0 − xir)ϕ

− [dlever + dlat sin(β)]ϕ (2ϕ+ ϕr − 2ϕPD) . (37)

We also expand this case for three-dimensional setups. For simplicity we assume a

measurement beam with normal incidence (βy, βz = 0) on the test mass and no detector

tilt. Then, the linearised tilt-dependent beam walk becomes

x3D
im,MR ≈ xim,0 − 2dleverϕ , (38)

y3D
im,MR ≈ yim,0 + 2dleverη . (39)

We can use again Eq. (19) with ϕm → 2ϕ and ηm → 2η, substitute xim, yim by Eq. (39)

and find

LPSSEPD,3D
ng,MR ≈ (xim,0 − xir)ϕ− (yim,0 − yir) η

− dlever

(
2ϕ2 + ϕϕr + 2η2 + η ηr

)
(40)

Both Eqs. (37) and (40) show that the non-geometric TTL coupling has first- and second-

order contributions. Like in the case of a jittering receiver, an initial shift between the

two beams causes linear non-geometric TTL coupling (first line in both equations). For

any given lever arm or a lateral offset dlat, an additional linear effect originates from an

angular misalignment of the reference beam or a photodiode tilt. If both are optimally

aligned, the beam walk would only yield second-order non-geometric TTL coupling.

LPS signal as sum of geometric and non-geometric effects Now, we can combine the

non-geometric and the geometric TTL contributions to see the total effect and do this

here for simplicity only for the two-dimensional case. Investigating the case of ideal

alignment, i.e. xim,0 = xir, ϕr = 0, and using Eq. (10) from [1], we find a total LPS of

LPSSEPD,2D
MR = OPD2D

MR + LPSSEPD,2D
ng,MR (41)

≈ −2dlat cos(β)ϕ+ dlong cos(β)ϕ2 . (42)

Like in the previous section, we can show for the given case that the geometric and

non-geometric lever arm effects cancel in the total TTL equations. However, the

non-geometric piston effect does not fully cancel its geometric counterpart leaving the

residual given in Eq. (42). The same holds for the more general case of arbitrarily aligned

beams, only that more TTL coupling terms would appear in the residual. In conclusion,
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we see that in a setup where neither the geometric nor the non-geometric TTL effects

get suppressed, the total piston effect will be the dominant noise source since the total

lever arm effect is zero. A lateral displacement dlat of the centre of rotation relative

to the incidence point on the detector causes linear coupling and should be avoided

if possible. Contrary, a longitudinal displacement of the centre of rotation adds only

second-order coupling and is, therefore, less critical.

Lateral jitter coupling The equations (36)-(42) hold for angular jitter coupling

assuming time-dependent rotations ϕ(t) and η(t) as well as for lateral jitter coupling

assuming a time-dependency of dlat(t). Like before, we see in Eq. (40) that lateral jitter

does not couple into the non-geometric LPS signal if the beams have a normal incidence

on the mirror, i.e. βy, βz = 0. Contrary, Eq. (37) shows that lateral behaviour enters

the signal if β 6= 0. However, this coupling is small for small lateral jitter since we

multiply with quadratic angular misalignments giving in total a third-order effect. On

the other hand, we see in Eq. (42) for the full signal that uncancelled geometric lateral

jitter coupling induces significant TTL coupling.

3.2.5. Identical Gaussian beams with transmissive components along the measurement

beam path The effect of transmissive components on the measurement beam path has

previously been discussed in [1]. The beam refraction occurring due to the different

refractive indices of the surrounding medium and the component’s material changes

the beam path within the component. Consequently, the beam is shifted laterally with

respect to the path the beam would propagate if the transmissive component was not

there. The respective beam walk is

x2D
im,tc ≈ −

∑
i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)
− cos(ϕBS,i)

ϕm

−
∑
i

3

2

n2
BS,itBS,i cos(ϕBS,i) sin(ϕBS,i)

((n2
BS,i − sin2(ϕBS,i))5/2

(
n2

BS,i − 1
)
ϕ2
m . (43)

This equation can be used both for the case of angular jitter of a system (replace

ϕm → −ϕRS) or of a mirror (ϕm → 2ϕ). The total beam walk is then the sum of

Eq. (43) and the offsets derived for a rotation of the setup (Eq. (22)) or the mirror

(Eq. (36)):

xim,MRT = xim,MR + xim,tc , (44)

xim,RST = xim,RS + xim,tc . (45)

In the given case of identical beam parameters, this sum of beam walks results also in

a full non-geometric LPS signal which is a sum of the previously derived terms, and an

additional LPS signal due to the transmissive component:

LPSng,MRT = LPSng,MR + LPSSEPD
ng,tc , (46)

LPSng,RST = LPSng,RS + LPSSEPD
ng,tc . (47)
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In the two-dimensional case, the additive term reads

LPSSEPD,2D
ng,tc ≈ −

∑
i

tBS,i

2

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)

− cos(ϕBS,i)

ϕm [ϕm + ϕr − 2ϕPD] . (48)

LPS signal as sum of geometric and non-geometric effects Transmissive components

equally affect the geometric TTL coupling [1, cf Eq. (26)]. It can then be shown that

the transmissive component dependent geometric and non-geometric TTL terms cancel

in the full TTL signal

LPSSEPD,2D
tc = OPD2D

tc + LPSSEPD,2D
ng,tc (49)

≈ 0 . (50)

provided that the reference beam is nominally aligned, i.e. ϕr = 0.

In summary, transmissive components do not contribute to angular or lateral jitter

TTL coupling if both beams feature the same beam parameters and the reference beam

impinges with a normal incidence at the detector.

3.2.6. Arbitrary Gaussian beams with arbitrary centre of rotation In the previous

examples, the measurement and reference beam had initially the same intensity and

phase profile on the detector. However, this is not representative for interferometers like

LISA, GRACE-FO, or arbitrary instruments that use heterodyne interferometers where

identical beam parameters are effectively not achievable. A beam parameter mismatch

has a strong influence on the cross-coupling. The main reason for this is a discrepancy

between the wavefront curvatures and diameter of the beams in the detector plane. A

qualitative analysis of this effect can be found in [22].

Here, we provide an analytic expression for the non-geometric part of the path length

measurement as we have done for the previous simpler cases. We find

LPSSEPD,2D
ng = (xim − xir)

[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2
(ϕm − ϕPD)

+
zRr(zRm + zRr)− zr(zm − zr)

(zRm + zRr)2 + (zm − zr)2
(ϕr − ϕPD)

]
−
{

zRrzm + zRmzr
k((zRm + zRr)2 + (zm − zr)2)

+
(xim − xir)2

(zRm + zRr)2 + (zm − zr)2

[
zm −

2(zRm + zRr)(zRrzm + zRmzr)

(zRm + zRr)2 + (zm − zr)2

]}
·
(
ϕ2
m

2
− ϕmϕPD

)
−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

](
ϕ2
m

2
− ϕmϕr

)
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Figure 8. Simulated path length signal in the scenario with two Gaussian beams

that only differ in their waist location and interfere on an infinitely large detector. All

graphs go through the origin because we chose for each setting the signal obtained at a

beam angle of zero as a reference and subtracted it from each curve. We find quadratic

TTL coupling for this case of varying the waist location. The simulation parameters

were: waist radius of both beams w0 = 1 mm, nominal distances from waist at detector

zr = 100 mm and zm = zr + { -20 mm, -10 mm, 0 mm, 10 mm, 20 mm}, pivot position

at point of incidence, and detector radius 100 mm.

+ (xim − xir)2

[
(zm − zr)

2 ((zRm + zRr)2 + (zm − zr)2)

]
, (51)

where xim can be either static or dynamic as introduced in the previous subsection.

Similar to the case of equal beam parameters, we can neglect some terms in Eq. (51)

since they are negligible in common interferometric setups. We neglected the terms

featuring a division by the wavenumber k, or a product of a squared beam offset on the

detector and a quadric tilt dependency, and find

LPSSEPD,2D
ng ≈ (xim − xir)

[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2
(ϕm − ϕPD)

+
zRr(zRm + zRr)− zr(zm − zr)

(zRm + zRr)2 + (zm − zr)2
(ϕr − ϕPD)

]
−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

](
ϕ2
m

2
− ϕmϕr

)
+ (xim − xir)2

[
(zm − zr)

2 ((zRm + zRr)2 + (zm − zr)2)

]
. (52)

By setting zRm = zRr and zm = zr, Eq. (52) reduces to the case of equal beam parameters

(compare Eq. (18)).

Though Eq. (52) is a fairly complex equation, it gives valuable information, for

instance, if only single parameter changes are investigated at a time. Changing, for
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Figure 9. Simulated path length signal in the scenario with two Gaussian beams

that only differ in their waist size and interfere on an infinitely large detector. All

graphs go through the origin because we chose for each setting the signal obtained at a

beam angle of zero as reference and subtracted it from each curve. We find quadratic

TTL coupling for this case of varying the waist sizes. The simulation parameters were:

waist radii w0r = 1 mm and w0m = w0r + { -0.2 mm, -0.1 mm, 0 mm, 0.1 mm, 0.2 mm},
nominal distances from waist at detector zm = zr = 100 mm, xim = xir, pivot position

at point of incidence, and detector radius 100 mm.

example, the distance from waist of the measurement beam with respect to the reference

beam gives a quadratic TTL coupling as shown in Fig. 8. Changing the waist sizes of

the beam instead, while keeping the other parameters identical, will likewise generate

second-order TTL coupling, see Fig. 9. This shows that the TTL coupling is a mixture

of linear and second-order terms for arbitrary beam parameter mismatches.

Arbitrary centre of rotation Compared to Eq. (18), the effect of beam walk on the

non-geometric TTL coupling is different for unequal beam parameters. Therefore, we

now evaluate the beam parameter-dependent TTL coupling also for arbitrary centres of

rotation. For this, we substitute again xim by its dynamic representation and assume for

simplicity a nominally impinging reference beam (ϕr = 0) and no detector tilt (ϕPD = 0).

In the case of a rotation of the receiving system, we therefore substitute xim by Eq. (22)

in Eq. (52) and replace ϕm → −ϕRS giving

LPSSEPD,2D
ng,RS ≈ −(xim,0 − xir)

zRm(zRm + zRr) + zm(zm − zr)
(zRm + zRr)2 + (zm − zr)2

ϕRS

+ dlong (xim,0 − xir)
[

(zm − zr)
(zRm + zRr)2 + (zm − zr)2

]
ϕRS

− dlong

[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕ2

RS
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+ (d2
long − dlat (xim,0 − xir))

[
(zm − zr)

2 ((zRm + zRr)2 + (zm − zr)2)

]
ϕ2

RS

−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

]
ϕ2

RS

2
. (53)

Analogously we proceed for the mirror rotation, where we substitute xim by Eq. (36)

and ϕm → 2ϕ. Thus we find

LPSSEPD,2D
ng,MR

≈ 2(xim,0 − xir)
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2
ϕ

− 2 [dlever + dlat sin(β)] (xim,0 − xir)
[

(zm − zr)
(zRm + zRr)2 + (zm − zr)2

]
ϕ

− 4 [dlever + dlat sin(β)]

[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕ2

+
{

2 [dlever + dlat sin(β)]2 + [2dlat cos(β) + dlong sin(β)] (xim,0 − xir)
}

·
[

(zm − zr)
(zRm + zRr)2 + (zm − zr)2

]
ϕ2

− 2

[
(z2

Rr + z2
r )zm − (z2

Rm + z2
m)zr

(zRm + zRr)2 + (zm − zr)2

]
ϕ2 . (54)

Last, we investigate this case for beams passing through transmissive components.

By substituting the beam walk by Eq. (43), we find

LPSSEPD,2D
ng,tc

≈ (xim,0 − xir)
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2
ϕm

−
∑
i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)
− cos(ϕBS,i)


· (xim,0 − xir)

[
(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕm

−
∑
i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)
− cos(ϕBS,i)


·
[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m

+


∑

i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)
− cos(ϕBS,i)

2

−
∑
i

3

2

n2
BS,itBS,i cos(ϕBS,i) sin(ϕBS,i)

((n2
BS,i − sin2(ϕBS,i))5/2

(
n2

BS,i − 1
)

(xim,0 − xir)


·
[

(zm − zr)
(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m
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−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m

2
. (55)

In all three cases, we find analogously to the cases with equal beam parameters

(Eqs. (23), (37) and (48)) that the linear terms disappear, if the two beams are nominally

aligned, i.e. xim,0 = xir. In general, the dynamic beam walk adds first- and second-order

TTL coupling.

We see that dynamic beam walk couples with the non-equal beam parameters.

Hence these terms cannot (partially) cancel with the geometric TTL coupling as in the

case of equal beam parameters (compare Eqs. (33), (42) and (50)).

However, we can construct a special case where it does indeed cancel. The waist

size becomes irrelevant when considering a rotation around the waist position. Let

both beams be identical besides their waist size and imping nominally at the non-tilted

detector, i.e. zm = zr, xim,0 = xir, ϕr = 0 and ϕPD = 0. The centre of rotation

is longitudinally displaced from the detector surface and lies in the beam waist, i.e.

dlong = zm. In this case, the geometric and the non-geometric TTL effects cancel each

other.

LPSSEPD,2D
RS = OPD2D

RS + LPSSEPD,2D
ng,RS (56)

≈
[
dlong

ϕ2
RS

2

]
− [dlong ϕRS]

[
zRm

zRm + zRr

]
ϕRS

−
[

(zRr − zRm) dlong

zRm + zRr

]
ϕ2

RS

2
(57)

= 0 . (58)

3.2.7. Wavefront errors We have so far generally assumed the idealised case of

perfect fundamental Gaussian beams with axial symmetry. In experimental reality,

the interfering Gaussian wavefronts will have small distortions that can, for instance,

be described by a superposition of higher-order modes with low amplitudes. These

superimposing modes then affect the symmetry of the Gaussian beams, as illustrated

in Fig. 10. Consequently, wavefront errors affect the TTL coupling behaviour. These

additional wavefront error dependent TTL effects cannot be easily modelled for all the

discussed cases. So instead, we assume a fairly arbitrary TTL contribution, which

then in a Taylor series expansion up to second-order would be containing both first-

and second-order contributions. Some numerical simulation programs can handle these

wavefront errors and consider them in the final signal, e.g., IfoCAD [3, 20].

3.3. TTL effects originating from detector properties

Not only do the wavefront properties of the beams affect the LPS signal, but also the

detector geometry itself contributes to the cross-coupling. Mathematically, this can

be seen from the integral over the detector surface S in Eq. (4), which is used for

computing an LPS signal using Eq. (5). We will therefore investigate below the various

contributions to LPSng originating from detector properties. In Sec. 3.3.1 we show that
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Figure 10. A fundamental mode is mixed with a HG30 mode, the resulting amplitude

and intensity profiles of the resulting beam are asymmetric (previously shown in [22]).

the photodiode angle cancels from the LPS signal and can, therefore, be directly set to

zero in simulations, independent of the corresponding experimental value. In Sec. 3.3.2

we then show that different definitions of the LPS signal exist if quadrant diodes are used.

These different LPS signal types usually show different amounts of TTL coupling. We

then show in Sec. 3.3.3 how phase contributions for finite square quadrant photodiodes

can be computed analytically. Finally, we briefly discuss the effect of diode imperfections

in Sec. 3.3.4.

3.3.1. Tilt of the detector The photodiode angle affects the geometric (see [1, cf

Eqs. (30) and (31)]), as well as the non-geometric (see Sec. 3.2) contributions to the

total TTL coupling. This is natural for the beam axes of the measurement and reference

beam, which need to propagate a different optical path length dependent on the detector

angle. However, this does not necessarily also hold for the interferometric phase. Since

both beams are brought to interference on a beam recombiner prior to the photodiode,

both beams experience the same phase changes from this point to the detector. A tilt of

the detector surface is then a change that equally affects the reference and measurement

beam, as well as their relative phase in each detector point. This is shown in Fig. 11.

There, the TTL coupling for unequal beam parameters is compared for the case of an

un-tilted photodiode (left part of the image), with the case of a tilted photodiode (right

part of the image). Even though the complex amplitude vectors in each detector point

slightly change due to the detector tilt, we could not find an effect on the total phase

(green arrows). The detector angle is therefore expected to either cancel from the LPS

signal or to be small, i.e. much smaller than we would expect from geometric TTL

estimates.

To confirm this expectation, we focus on the photodiode angle dependent terms in

the LPS = OPD + LPSng and, therefore, subtract all terms not depending on ϕPD, i.e.
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Figure 11. Qualitative analysis of the TTL coupling for unequal beam parameters

showing that the photodiode angle does not contribute to the TTL coupling. The left-

hand side shows the case of a non-tilted detector (ϕPD = 0), the right-hand side the

case of a tilted detector. Upper left figure: Neither the beams nor the detector is tilted.

Lower left figure: Non-tilted detector, but the measurement beam (red) got tilted with

respect to the reference beam (blue). The total phase changed in comparison to the

non-tilted case, implying TTL coupling. Upper and lower right figures: same as the

corresponding left figures, but the detector surface was tilted. This tilt changes the

direction along which the complex amplitudes are being defined and read out (see

connecting lines between the blue and red curves), such that all vector representations

of the complex amplitudes are slightly changed. However, no change of the total phases

can be observed here compared to the cases without detector tilt.

LPS(ϕPD = 0), and find

LPSSEPD,2D(ϕPD)− LPSSEPD,2D(ϕPD = 0) ≈ 0 . (59)

We see that all considerable first- and second-order detector tilt dependent TTL terms

cancel out in the full LPS signal. This evaluation applies to the case of a mirror rotation

substituting OPD2D
MRT ([1, cf Eq. (30)]) for the geometric and LPSSEPD,2D

ng (Eq. (52)) for

the non-geometric contribution with x2D
im,MRT (Eq. (44)) as well for a rotation of the

receiving system substituting OPD2D
RST ([1, cf Eq. (31)]) and LPSSEPD,2D

ng (Eq. (52)) with

x2D
im,RST (Eq. (45)).

We conclude from this that in any derivation of LPS signals for large SEPDs,

the photodiode angle ϕPD can be neglected even if the diode is in the corresponding

experiment indeed tilted. Nonetheless, we show all equations with ϕPD here because ray

tracing tools computing the OPD will always include this term. For better agreements

between a simulated OPD and LPS and corresponding experimental results, it is,

therefore, advisable to set ϕPD = 0 in simulations.

3.3.2. Dependence on the path length signal definition using QPDs So far, we have

assumed infinitely large SEPDs as detectors, which means that both wavefronts are fully

sensed by the detector and no clipping occurs. This assumption is not valid in cases

where a quadrant photodiode (QPD) is being used for angular sensing using differential
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wavefront sensing (DWS) [23]. QPDs further allow for multiple phase signal definitions

[24] which contribute differently to the overall cross-coupling. This originates from the

fact that every photodiode quadrant delivers an individual photocurrent, and, therefore,

an individual complex amplitude. Mathematically, this is described by evaluating the

surface integral in Eq. (13) over the corresponding quadrant i, resulting in the complex

amplitude ai. The four complex amplitudes can then be combined in different ways to

generate the total phase readout φ and the corresponding LPS signal. We show this

here exemplary for two commonly used QPD path length definitions, the arithmetic

mean phase and the LISA Pathfinder LPS signal.

The arithmetic mean phase (AP) is literally derived from the arithmetic mean of

the phases of the four segments

φAP =
arg(aA) + arg(aB) + arg(aC) + arg(aD)

4
(60)

=
φA + φB + φC + φD

4
, (61)

where A,B,C,D denote the four quadrants of the photodiode. The corresponding LPS

signal is then defined like before (see Eq. (5)):

LPSAP =
φAP

k
=
φA + φB + φC + φD

4k
. (62)

This is a kind of a natural procedure when the signal is processed by a digital phase-

locked loop (DPLL) based phasemeter that produces phases as primary output and not

complex amplitudes [25].

The second signal definition we discuss here is called LISA Pathfinder (LPF) LPS

signal definition because it was used in the LISA Pathfinder phasemeter, which uses an

SBDFT. The result of which is a complex amplitude [26]. It is defined as the argument

of the sum of all complex amplitudes, divided by k:

LPSLPF =
1

k
arg(aA + aB + aC + aD) . (63)

For a QPD with slits of zero width, the sum of the complex amplitudes of the single

quadrants, corresponding to a sum of the integrals of the single segments, is equal to

the complex amplitude of the entire diode. Therefore, for a slit diameter of zero the

LISA Pathfinder QPD path length definition (LPSLPF) becomes equal to the SEPD path

length definition (LPSSEPD) [24].

Figures 12 and 13 illustrate the effect of different wavefront curvatures on the cross-

coupling if either the LPSLPF or LPSAP signal is used. In the centre, two interfering

wavefronts are shown, with equal curvatures in Fig. 12, and with unequal curvatures in

Fig. 13. Depending on the total phase signal definition, the complex amplitude vectors

are recombined here in different ways. On the right, the LPF definition sums up all

shown complex amplitude vectors of the left- and right-hand sides. On the left, the

AP signal calculation is illustrated. Here, the complex amplitude vectors of the left

and right-hand sides are added separately, resulting in a phase of the left- and right-

hand sides (small grey arrows). These complex amplitude vectors are then added and
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normalised again resulting in the green arrow which illustrates the averaged phase. In

the case of equal wavefront curvatures, Fig. 12, the overall phase (i.e. the angle of the

green arrow) is independent of the tilt angle for both phase definitions. That means

that, like in the case of an SEPD, we do not expect TTL coupling for either of the LPS

definitions if the interfering wavefronts have matched beam parameters.

Contrary, in the case of unequal wavefront curvatures in Fig. 13, the overall LPF

phase changes if the wavefront tilts, while the overall AP phase is unaffected by tilts.

Hence, in the case of unmatched wavefront properties and a rotation around the centre

of the QPD, we expect that the AP signal shows less TTL coupling than the LPF

signal. We confirm this using IfoCAD as shown in Fig. 14 for two aligned beams with

identical parameters besides their waist size and a rotation of the measurement beam

around their shared point of incidence. By Fig. 14, we demonstrate that the resulting

AP signal comprises less TTL coupling than the LPF signal. Furthermore, the image

shows that the LPF signal and the SEPD signal have nearly identical TTL coupling.

This is expected from the definition of LPSLPF. Finally, this demonstrates that using

quadrant diodes and an AP signal can in some cases reduce the TTL coupling noise in

the system. This was previously also observed in [27, 28].

3.3.3. TTL contributions comparing infinite SEPDs with finite square QPDs We show

in this section that the TTL estimates for large SEPDs are still useful in cases, where

small square SEPDs or QPDs and the LPF LPS signal are used. The derived signal

contains the large SEPD’s signal, though an additional TTL term originating from the

clipping needs to be considered.

To account for phase changes due to clipping on the detector surface, we repeat the

analytic derivation introduced in Sec. 3.1 but assume this time a square finite quadrant

photodiode shape. This means, we integrate the complex product of the electrical fields

over the detector surface, see Eq. (4) and compare [3, 21]. Transforming the electrical

fields into photodiode coordinates x, y, we can rewrite Eq. (4) via

φ = arg

[∫
PD

dS exp
(
Cxxx

2 + Cxx+ Cyyy
2 + Cyy + C0

)]
(64)

where Ci ∈ C. The integration over the detector surface gives

φ = arg

{π exp
[

1
4

(
C2

x

Cxx
+

C2
y

Cyy
− 4C0

)]
√
Cxx

√
Cyy

×
[

1

4
erf

(
Cx + Cxx x

2
√
Cxx

)] [1

4
erf
(Cy + Cyy y

2
√
Cyy

)]∣∣∣
PD

}
(65)

= arg

{π exp
[

1
4

(
C2

x

Cxx
+

C2
y

Cyy
− 4C0

)]
√
Cxx

√
Cyy

}
+ arg

{[1

4
erf
(Cx + Cxx x

2
√
Cxx

)][1

4
erf
(Cy + Cyy y

2
√
Cyy

)]∣∣∣
PD

}
, (66)
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Figure 12. The effect of different path length definitions on the overall phase in

the case of equal wavefront curvatures. On the right, the LPF definition sums up all

complex amplitude vectors. On the left, the AP definition, i.e. Eq. (62), is used for

two segments, which computes an average phase per side (left and right) and adds

the averaged side complex amplitude vectors (grey arrows). The overall phase (green

arrow) is independent of the tilt angle for both phase definitions.

 

Figure 13. The effect of different path length definitions on the overall phase in case

of unequal wavefront curvatures. On the right, the LPF path length signal is shown

and on the left, the AP definition. Both, the LPF and the AP phases, change with the

rotation. However, the AP phase is less affected by the tilts.
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Figure 14. Longitudinal path length signals computed with IfoCAD for a single

element diode, and for a QPD with either the LPF or the AP signal definition.

Both beams are nominally equally aligned. One of the beams got tilted around its

point of incidence ensuring a pure non-geometric signal. The simulation parameters

were: waist radius w0r =1 mm and w0r =0.8 mm, distance from waist at detector

zm = zr = 100 mm, pivot position dlong = dlat = 0 mm, detector radius 5 mm, and slit

width 50µm.

whereby the notation
∫

dS f(x, y) = F (x, y)|PD describes the evaluation of the

antiderivative F (x, y) over the surface of the photodiode. If the photodiode surface

consists of several segments, the notation describes the sum over these segments,

inserting the boundary values respectively.

It can easily be verified that the second argument in Eq. (66) becomes zero for

infinitely large SEPDs. Hence

φ = φSEPD

+ arg
{[1

4
erf

(
Cx + Cxx x

2
√
Cxx

)][
1

4
erf

(
Cy + Cyy y

2
√
Cyy

)] ∣∣∣
PD

}
. (67)

We conclude that the phase measured for instance by a QPD is always the sum of the

phase measured by an infinitely large SEPD and a second phase contribution that de-

pends on the detector geometry. However, for large diodes with small deviations from

SEPDs, as for example QPDs with a narrow insensitive slit, φSEPD will be the domi-

nant summand. This agrees exactly with the simulation results shown in Fig. 14, where

a QPD with a slit width of 50µm was assumed and the LPSLPF signal deviates only

slightly from the SEPD signal.
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3.3.4. Arbitrary detector errors Like for arbitrary wavefront errors, also imperfections

of the detector affect the TTL coupling. The segments can have different efficiencies

or different shapes due to defects or additional features like bonding wires. Such

disturbances are described and analysed for different detectors for instance in [29]. In

such a case, the equations described throughout this paper would be disturbed by the

imperfections and would, therefore, need to be adapted to the given situation. Naturally,

we cannot adapt the given equations for arbitrary and unknown detector imperfections.

Instead, we can say that arbitrary imperfections with no clear symmetry, could affect

and change both the first- and second-order TTL contributions in the system or any

other order of interest.

4. Summary non-geometric TTL coupling

In this section, we summarise the non-geometric TTL effects providing an estimate of

the polynomial degree of the added TTL coupling. Throughout this paper, we have

mostly assumed single element photodiodes, and therefore also assume this detector

type here. However, we have shown in Sec. 3.3.3 that these results are relevant also

when quadrant photodiodes are used, and that the deviation for QPDs and the LPSLPF

signal from the given equations is particularly small. For simplicity, we assume here a

nominally aligned measurement and reference beam, i.e. β = 0, ϕr = 0. Furthermore,

we assume no detector tilt, i.e. ϕPD = 0, since we have shown in Sec. 3.3.1 that the

detector tilt angle cancels in either case from the total LPS signal.

Given two beams that are nominally aligned and always share the same point

of incidence, the non-geometric coupling signal for equal beam parameters becomes

negligible. However, we face TTL coupling if both beams feature different beam

parameters (compare Eq. (52)), i.e.

LPSSEPD,2D
ng = −

[
(z2

Rr + z2
r )zm − (z2

Rm + z2
m)zr

(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m

2
. (68)

For equal and for unequal beam parameters, a static offset between the

measurement and the reference beam (xim − xir = const.) couples linearly into the

signal. This holds for the case of a rotating setup as well as for a rotating mirror

(compare Eq. (18)). Under our assumptions, we get for equal beam parameters

LPSSEPD,2D
ng ≈ (xim − xir)

ϕm

2
(69)

and for unequal beam parameters (compare Eq. (52))

LPSSEPD,2D
ng

≈ (xim − xir)
[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕm

−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m

2
. (70)

Furthermore, the TTL coupling in the case of a setup dependent beam walk, i.e. if

the centre of rotation is not located on the photodiode surface, adds second-order TTL
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coupling both for the case of angular jitter of the receiving system (RS, cf. Eq. (23)) or

a reflecting mirror (MR, cf. Eq. (37)). We find for beams with equal beam parameters:

LPSSEPD,2D
ng,RS (ϕRS(t)) ≈ −1

2
dlong ϕ

2
RS , (71)

LPSSEPD,2D
ng,MR (ϕ(t)) ≈ −2dleverϕ

2 . (72)

Transmissive components also contribute as second-order TTL coupling, no matter

whether angular jitter of a mirror or a receiving system is considered. For equal beam

parameters we find (cf. Eq. (48)):

LPSSEPD,2D
ng,tc ≈

∑
i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)

− cos(ϕBS,i)

 ϕ2
m

2
. (73)

For non-equal beam parameters, we find not only second-order but also linear coupling

since we get terms that depend on the static beam offsets and the dynamic beam walk.

However, assuming a negligible static beam offsets, Eqs. (53), (54) and (55) reduce to

second-order coupling equations.

LPSSEPD,2D
ng,RS (ϕRS(t))

≈ − dlong

[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕ2

RS

+ d2
long

[
(zm − zr)

2 ((zRm + zRr)2 + (zm − zr)2)

]
ϕ2

RS

−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

]
ϕ2

RS

2
, (74)

LPSSEPD,2D
ng,MR (ϕ(t))

≈ − 4dlever

[zRm(zRm + zRr) + zm(zm − zr)
(zRm + zRr)2 + (zm − zr)2

]
ϕ2

+ 2d2
lever

[
(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕ2

− 2

[
(z2

Rr + z2
r )zm − (z2

Rm + z2
m)zr

(zRm + zRr)2 + (zm − zr)2

]
ϕ2 , (75)

LPSSEPD,2D
ng,tc

≈ −
∑
i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)
− cos(ϕBS,i)


·
[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m
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+

∑
i

tBS,i

 n2
BS,i cos(ϕBS,i)

2

(n2
BS,i − sin2(ϕBS,i))3/2

− sin2(ϕBS,i)√
n2

BS,i − sin2(ϕBS,i)
− cos(ϕBS,i)

2

·
[

(zm − zr)
(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m

−
[

(z2
Rr + z2

r )zm − (z2
Rm + z2

m)zr
(zRm + zRr)2 + (zm − zr)2

]
ϕ2
m

2
. (76)

Lateral jitter does not cause any first- or second-order non-geometric TTL coupling

in the case of a jittering mirror and under the given assumptions:

LPSSEPD,2D
ng,MR (dlat(t)) ≈ 0 . (77)

However, this is different for a lateral jittering reference system. A laterally jittering

receiving system changes the point of incidence of the measurement beam (xim).

Therefore, assuming a constant misalignment of the receiver with respect to the received

beam and a varying point of incidence xim(t) of the latter, yields a strong linear TTL

coupling for equal beam parameters by Eq. (28)

LPSSEPD,2D
ng,RS (yRS(t)) ≈ −1

2
yRS(t)ϕRS (78)

as well as for unequal beam parameters

LPSSEPD,2D
ng,RS (yRS(t))

≈ −yRS(t)

[
zRm(zRm + zRr) + zm(zm − zr)

(zRm + zRr)2 + (zm − zr)2

]
ϕRS . (79)

For the given assumptions, all presented non-geometric TTL effects are summarised

in Tab. 2. This table is the counterpart to the geometric TTL effects summarised in [1,

cf Tab. 1].

5. Key findings on total TTL coupling

After summarising the non-geometric TTL effects in the previous section, we now discuss

our findings on the total TTL effect, i.e. the sum of geometric and non-geometric TTL

effects.

We have demonstrated in Secs. 3.2.3 - 3.2.5 that the total TTL coupling fully cancels

if the centre of rotation lies on the beam’s propagation axis, and the Gaussian beams

have identical beam parameters. This holds also if transmissive components exist along

the beam path. In either case, the beam walk induced non-geometric TTL coupling

cancels the geometric TTL effects. However, if the centre of rotation is laterally shifted

against the beam axis, the cancellation fails. Then, a significant geometric TTL coupling

exists, that has no non-geometric counterpart.

We find an incomplete TTL cancellation in the case of unequal parameters.

However, we can construct particular scenarios in which the cancellations holds again.

If the interfering beams have an identical waist position and a pivot in the centre of the
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Table 2. Overview of the different non-geometric cross-coupling mechanisms for a

beam with normal incidence and no photodiode tilt (except where explicitly stated

otherwise), i.e. β = ϕPD = 0. We further assume normal incidence of the reference

beam, i.e. ϕr = 0, and equal beam parameters, unless explicitly stated otherwise.

For each effect we give a short description and the general behaviour (approximated),

like linear, quadratic or mixed with respect to the tilt angle. Cross-coupling due to

wavefront errors and detector geometry have in general an arbitrary form. The non-

geometric effects apply both for mirror rotation (MR) or receiving system rotation

(RS), unless explicitly mentioned otherwise.

Cross-coupling

mechanism

Name General

behaviour

Eq. Sec. Description

w
av

ef
ro

n
t

d
ep

en
d

en
t

T
T

L

la
te

ra
l

receiver jiter LPSSEPD
ng,RS linear (78),(79) 3.2.3 Lateral jitter yields a beam walk of

the measurement beam.

mirror jitter LPSSEPD
ng,MR negligible (77) 3.2.4 Lateral jitter coupling affects the

non-geometric LPS only at higher

orders.

an
gu

la
r

beam offset LPSSEPD
ng mixed (69),(70) 3.2.2 Initial misalignment on the detector

generates asymmetric disparity.

beam walk

− receiver LPSSEPD
ng,RS quadratic (71),(74) 3.2.3 Offsets between rotation point and

detector lead to angle dependent

beam walk.

− mirror LPSSEPD
ng,MR quadratic (72),(75) 3.2.4 Same as for RS beam walk.

− transmissive

components

LPSSEPD
ng,tc quadratic (73),(76) 3.2.5 Transmissive optical components

lead to an additional angle depen-

dent beam walk.

beam

parameters

LPSSEPD
ng quadratic (68) 3.2.6 Tilting wavefronts with a curvature

mismatch generates coupling.

b
ot

h

reference beam

tilt

linear 3 Reference beam tilts add in all cases

linear coupling.

wavefront

errors

arbitrary 3.2.7 Aberrations in the wavefronts dis-

turb the balance between different

detector sides.

d
et

ec
to

r
T

T
L

b
ot

h

detector

geometry

arbitrary 3.3.4 Errors and additional detector fea-

tures alter the measured results.

tilt of detector negligible (59) 3.3.1 Tilting the detector effects the ge-

ometric and non-geometric cross-

coupling inversely. Hence its contri-

bution to the full signal cancels.
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waist, the geometric and the non-geometric signal cancel despite a possible arbitrary

waist size mismatch, see Sec. 3.2.6.

With a dedicated lens system, one can image the centre of rotation of the beam

onto its point of incidence at the detector [27, 11]. In this case, we find no geometric

TTL coupling but non-geometric coupling terms due to the wavefront inequalities of

the two beams. If imaging the point of rotation not exactly onto the detector surface

or shifting the photodiode longitudinally, a small geometric coupling remains, which

can for a suitable alignment counteract the non-geometric coupling [2]. Therefore, such

imaging systems can significantly suppress the observed TTL coupling and will be used

for this purpose in the LISA mission (e.g. [2]).

Another case of non-geometric TTL coupling without a geometric counterpart can

be found if the points of incidence of the two beams do not coincide but have a static

offset. We show in Sec. 3.2.2 that this offset breaks the wavefront symmetry even for

equal beam parameters and generates linear non-geometric TTL coupling. Thus, an

intentional offset of one of the beams can counteract other linear TTL coupling effects

without simultaneously changing the geometric TTL coupling.

Analogously, lateral jitter of the receiving system effectively changes the offset

between the two beams at the detector without changing their geometric path length.

The resulting total lateral jitter coupling originates from non-geometric effects only, and

is linear (Sec. 3.2.3).

This is different for the lateral jitter of a test mass, where the test mass moves into

or out of the beam path. This shortens or elongates the beams’ optical path length. On

the other hand, the lateral jitter induces only negligible non-geometric TTL coupling

effects since the reflected beam neither tilts nor significantly shifts in a lateral direction

(Sec. 3.2.4).

For both considered systems, a lateral offset between the centre of rotation and

the point of reflection (angular test mass jitter) or point of detection (angular receiver

jitter), respectively, induces linear TTL coupling [1]. This coupling is fully geometric

since any non-geometric signal contributions are negligible, see Secs. 3.2.3 and 3.2.4.

Therefore, applying a lateral shift of the respective centre of rotation can be used to

counteract other linear angular TTL coupling effects.

In summary, these presented TTL mechanisms can be used to counteract the overall

TTL coupling even if the single underlying effects are unknown. This has been proven

efficient in experiments (e.g. [11, 2, 30]).

6. Conclusion

Throughout this work, we have described TTL coupling as the angular and lateral

motion of a mirror reflecting one of the interfered beams, or the jitter of a receiving

system with respect to a received beam, coupling into the phase readout. This coupling

adds unwanted noise to the phase signal. The TTL coupling noise is an important

noise source in precision interferometers, particularly in space interferometers, such as
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future space-based gravitational wave observatories like LISA, or the geodesy mission

GRACE-FO and its successors. In this work we categorised the different non-geometric

TTL coupling mechanisms for the interference of two Gaussian beams. We distinguish

between the effects originating from the characteristics of the wavefronts, and the

detector geometry including different path length signal definitions.

Wherever possible, we computed these non-geometric effects analytically from the

overlap integral over the beams’ electrical fields. The results agree with the numeric

computations done by the simulation tool IfoCAD.

We summarised our key findings of the various non-geometric TTL coupling effects

in Sec. 4 and Tab. 2. Additionally, we combined these key findings with the geometric

TTL results presented in [1] to estimate the total TTL coupling. In Sec. 5, we discussed

in which cases the geometric and non-geometric TTL mechanisms cancel each other, or

can intentionally be used to counteract other TTL effects for minimising the total TTL

coupling.

Our findings can be a valuable tool for the suppression of TTL coupling noise either

by design or realignment in an existing system. Such a suppression is essential for a

reduction of the TTL noise to a magnitude that can finally be removed by subtraction

in post-processing [13, 31].
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