317 research outputs found

    Continuum in the Excitation Spectrum of the S=1 Compound CsNiCl_3

    Full text link
    Recent neutron scattering experiments on CsNiCl_3 reveal some features which are not well described by the nonlinear sigma model nor by numerical simulations on isolated S=1 spin chains. In particular, in real systems the intensity of the continuum of multiparticle excitations, at T=6K, is about 5 times greater than predicted. Also the gap is slightly higher and the correlation length is smaller. We propose a theoretical scenario where the interchain interaction is approximated by a staggered magnetic field, yielding to a correct prediction of the observed quantities.Comment: 4 pages, 2 figures (.eps), RevTe

    The dimer-RVB State of the Four-Leg Heisenberg Ladder: Interference among Resonances

    Get PDF
    We study the ground state of the 4-leg spin ladder using a dimer-RVB ansatz and the Lanczos method. Besides the well known resonance mechanism between valence bond configurations we find novel interference effects among nearby resonances.Comment: 4 pages, RevTex, 7 eps fig

    A Systematic Study on Nonrelativistic Quarkonium Interaction

    Full text link
    recently proposed strictly phenomenological static quark-antiquark potential belonging to the generality V(r)=−Ar−α+κrβ+V0V(r)=-Ar^{-\alpha}+\kappa r^{\beta}+V_{0} is tested with heavy quarkonia in the context of the shifted large N-expansion method. This nonrelativistic potential model fits the spin-averaged mass spectra of the ccˉ,c\bar{c}, bbˉb\bar{b} and cc% \bar{b} quarkonia within a few MeV{\rm MeV} and also the five experimentally known leptonic decay widths of the ccˉc\bar{c} and bb% \bar{b} vector states. Further, we compute the hyperfine splittings of the bottomonium spectrum as well as the fine and hyperfine splittings of the charmonium spectrum. We give predictions for not yet observed BcB_{c} splittings. The model is then used to predict the masses of the remaining quarkonia and the leptonic decay widths of the two pseudoscalar c\bar{b%} states. Our results are compared with other models to gauge the reliability of the predictions and point out differences.Comment: 24 page

    Measuring work and heat in ultracold quantum gases

    Get PDF
    We propose a feasible experimental scheme to direct measure heat and work in cold atomic setups. The method is based on a recent proposal which shows that work is a positive operator valued measure (POVM). In the present contribution, we demonstrate that the interaction between the atoms and the light polarisation of a probe laser allows us to implement such POVM. In this way the work done on or extracted from the atoms after a given process is encoded in the light quadrature that can be measured with a standard homodyne detection. The protocol allows one to verify fluctuation theorems and study properties of the non-unitary dynamics of a given thermodynamic process.Comment: Published version in the Focus Issue on "Quantum Thermodynamics

    Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Full text link
    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

    Spin Chains in an External Magnetic Field. Closure of the Haldane Gap and Effective Field Theories

    Full text link
    We investigate both numerically and analytically the behaviour of a spin-1 antiferromagnetic (AFM) isotropic Heisenberg chain in an external magnetic field. Extensive DMRG studies of chains up to N=80 sites extend previous analyses and exhibit the well known phenomenon of the closure of the Haldane gap at a lower critical field H_c1. We obtain an estimate of the gap below H_c1. Above the lower critical field, when the correlation functions exhibit algebraic decay, we obtain the critical exponent as a function of the net magnetization as well as the magnetization curve up to the saturation (upper critical) field H_c2. We argue that, despite the fact that the SO(3) symmetry of the model is explicitly broken by the field, the Haldane phase of the model is still well described by an SO(3) nonlinear sigma-model. A mean-field theory is developed for the latter and its predictions are compared with those of the numerical analysis and with the existing literature.Comment: 11 pages, 4 eps figure

    Effective mapping of spin-1 chains onto integrable fermionic models. A study of string and Neel correlation functions

    Full text link
    We derive the dominant contribution to the large-distance decay of correlation functions for a spin chain model that exhibits both Haldane and Neel phases in its ground state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogolioubov quasiparticles related in turn to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by algebraic factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a 'dual' fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we find a finite characteristic length which is an unexpected feature at the critical point. We also comment briefly the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations.Comment: 28 pages, plain LaTeX, 2 EPS figure

    Quantum work for sudden quenches in Gaussian random Hamiltonians

    Get PDF
    In the context of nonequilibrium quantum thermodynamics, variables like work behave stochastically. A particular definition of the work probability density function (pdf) for coherent quantum processes allows the verification of the quantum version of the celebrated fluctuation theorems, due to Jarzynski and Crooks, that apply when the system is driven away from an initial equilibrium thermal state. Such a particular pdf depends basically on the details of the initial and final Hamiltonians, on the temperature of the initial thermal state, and on how some external parameter is changed during the coherent process. Using random matrix theory we derive a simple analytic expression that describes the general behavior of the work characteristic function G(u), associated with this particular work pdf for sudden quenches, valid for all the traditional Gaussian ensembles of Hamiltonians matrices. This formula well describes the general behavior of G(u) calculated from single draws of the initial and final Hamiltonians in all ranges of temperatures.Fil: Arrais, Eric G.. Universidade Federal do Rio de Janeiro; BrasilFil: Wisniacki, Diego Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Céleri, Lucas C.. Universidade Federal de Goiás; BrasilFil: De Almeida, Norton G.. Universidade Federal de Goiás; BrasilFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Toscano, Fabricio. Universidade Federal do Rio de Janeiro; Brasi

    Rapidly-converging methods for the location of quantum critical points from finite-size data

    Full text link
    We analyze in detail, beyond the usual scaling hypothesis, the finite-size convergence of static quantities toward the thermodynamic limit. In this way we are able to obtain sequences of pseudo-critical points which display a faster convergence rate as compared to currently used methods. The approaches are valid in any spatial dimension and for any value of the dynamic exponent. We demonstrate the effectiveness of our methods both analytically on the basis of the one dimensional XY model, and numerically considering c = 1 transitions occurring in non integrable spin models. In particular, we show that these general methods are able to locate precisely the onset of the Berezinskii-Kosterlitz-Thouless transition making only use of ground-state properties on relatively small systems.Comment: 9 pages, 2 EPS figures, RevTeX style. Updated to published versio
    • …
    corecore