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Dimer—resonating valence bond state of the four-leg Heisenberg ladder:
Interference among resonances
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We study the ground state of the four-leg spin ladder using a dimer—resonating valend®b@&)cnsatz
and the Lanczos method. Besides the well-known resonance mechanism between valence bond configurations
we find interference effects among nearby resonances. These effects were missed by standard factorizing
approaches to the RVB stat¢$0163-18209)08441-9

I. INTRODUCTION 4 N-1 N
H=Ja§1 gl sa(n)-sa<n+1>+n§1 [J'{Sy(n)-Sy(n)

Doped and undoped ladders have focused a lot of atten-
tion in recent years due to the existence of materials with that +S5(n)- Sy(N)}+3"Sy(n) - S3(n) +3”S(n) - Sy(n)1,
structure; some of them are close relatives of the fAigh-
oxides as the seriesz‘ﬁlr,ZCUZnIOmI,z wheren, is the num- (1)

ber of legs forming the laddérThe undoped Heisenberg whereS,(n) is the spin 1/2 operator at tre=1,. .. ,4 leg
spin ladders witn, even are known to be spin liquids with a andn=1,... N rung. We shall consider the cases of peri-
spin gap and exponential decaying correlation functfons.odic or closed boundary conditio®C) along the rungs,
The ground statéGS) of these low dimensional systems is i.e., J’=J"=J" and open BC'’s along the rungs, i.€/
given by a short-range resonating valence b@RWB) an- =J",J"=0. SettingJ”"=J"=0 we recover two decoupled
satz where the topological spin defects are confih@tie  two-leg ladder Hamiltonians. 18=0, the exact GS of Eq.
RVB picture is supported by mean fielddensity matrix (1) is given by the coherent superposition of the GS of every
renormalization groupgfDMRG),>* quantum Monte Carlo rung which can be written as

(QMC),® and Lanczos results concerning ladders with

=24 legs and variationaAnsdze (RVA) for the 2-leg [rung) =12 34+u,14 32,

ladder®® The purpose of this paper is to apply the RVA

method to the four-leg spin ladder with the aim of studying 1 J=3=3"

in more detail the structure of the short—rapge RVB state. In Ug=1{ 0.366 J'=J",0"=0 )
the two-leg ladder case the basic mechanism that lowers the -

GS energy is the resonance between two nearest-neighbor 0 J'=J"=0,

valence bond&® The simplest short-range RVBnsatzis S
given by a dimer-RVB state with a single variational param-Where ab:(|T>a|l>b_|l>a|T>b)/\/§ denotes the valence

eter u, which gives the amplitude of the resonafideSee  Pond state between the sites on the lagmdb of the nth
rung. In Figs. 1a) and Xb) we depict the valence bond states

Ref. 11 for a transfer matrix approach to dimer-RVB states.(z)
Switching on the intraleg coupling any pair of rung
bonds will start to resonate with a pair of leg bonds as in
Figs. Xc)—1(f). There are four types of “elementary” reso-
nances involving two consecutive runggandn+ 1 and two
legsi andj, which we denote as (12), (34), (14), and
In the four-leg ladder case we shall StUdy a dlmer-RVB(23) We associate an amp]itudﬁ to every one of these
Ansatzwhere the resonance may occur among any possiblgessonances. There is also a state with four leg bonds on two
pair of nearest-neigbor parallel bonds. The phenomenon weonsecutive rungs, which we denote as (1234), and give it
shall investigate in this paper is the “interference” betweenan amplitudeu,,s,[see Fig. 1g)]. Finally, we may have two
couples of resonating bonds. We mean by interference theesonancesij) and l) sharing a common rung as in Figs.
influence that a pair of resonating bonds exerts on anothei(h) and ki), which we denote as (12,34) and (14,23), and
pair of nearby resonating bonds. In the standard R\fBatz  give them amplitudesi;, 34=Uz4 12 aNd Ugg p3=Upz 14, -
of Liang et al!? the RVB amplitudes have a factorized form spectively. In this fashion we are able to retrieve a relevant
that cannot describe this interference effect. small set of variational parameters out of the huge set of all
The Hamiltonian of the four-leg spin ladder is given by resonating configurations.

Il. RVA APPROACH TO THE FOUR-LEG HEISENBERG
LADDER
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(12) (0) (34) (12) ()  (23)

FIG. 3. A dimer state constructed with the RR'’s given in Fig. 2.
The dotted lines represent the cuts described in the text.

It is important to realize that not all the states of the form
ApA Az, - Ay—in (WhereA, ;1 denotes the set of legs
cut between the rungsandn+ 1) are allowed. For example,

FIG. 1. Graphical representation of the local configurations tha@fter the configuration (12) one can only have either (0) or
make up the dimer-RVB\nsatzfor the four-leg ladder. Every line (34), or after (1234) only (0) may follow. These selection
connecting two sitea andb corresponds to the valence bond staterules are summarized in the graph of Fig. 4. The vertices of
“ab defined in the text. Sita belongs to the even sublattice while the graph denote the configurationsA=(0),(12),
site b belongs to the odd one. (34),(14),(23),(1234) while a link between the vertidks

and A’ indicates that these two configurations may appear

Let us suppose that a pair of resonating bonds is not ineonsecutively in an allowed dimer state. The amplitudes of
fluenced by its environment. This would imply the following the dimer states are associated to the links of the graph.
factorization uj; = uj;uy, which, as we shall see below, The RR’s of Fig. 2 generate all the dimer states of a

never happens. Figure 1 displays all the local configurationfour-leg ladder with periodic BC's along the rungs, and their
that should be combined in all possible manners to produce mumber grows exponentially with the number of 1ég&or
dimer-RVB Ansatz This seems to be a formidable problem the open BC’s we should restrict ourselves to dimer states
if we try to solve it with standard combinatorial methods. with no bonds of length greater than one. However, the
However, as in the two-leg ladder caséhe dimer-RVB  strong coupling limitJ/J’<1 forces us to include the va-
state of the four-leg ladder can be generated by the set ¢énce bond 14as in Eq.(2). So the distinction between
recurrence relationRR) given in Fig. 2. closed and open ladders will only appear in the variational

Figure 3 shows a state generated by these RR'’s. One cgfyrameters. The existence of RR’s to generate th&\ @&tz

characterize a dimer state withrungs by the collection of implies that the norm and expectation value of the Hamil-
legs that one cuts between two consecutive rungs. If no leggnian (1) also satisfies RR’s, which can be iterated to give
are cut we writg(0), cutting the legs andj we write (ij),  the energy of theAnsatz(H)y for any number of rungs\.
and cutting four legs we write (1234). With these notationsthe set of variational parameteus, is obtained by minimi-
the state of Fig. 3 reads (J®)(34)(12)(0)(23) and has an zation of(H)y . This method is similar to the matrix product
amplitudeu;sUso 3415Uz3- Ansatzof Ref. 14 but differs in that the states kept are non-
orthogonal as corresponds to a RVBsatz

f) 9) h) i)

Not f = [N |+% N+ N | lIl. RVA AND LANCZOS RESULTS

+

We now present our set of results obtained with the re-
currence variationahnsatzof the previous section and make
also a Lanczos study of the four-leg ladder that we use as a

gl N+, | N |+U23 NS +tUpag N

L]
L] [ )
NeTTL = N+ U/ U | N L

z
+
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z
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FIG. 2. Recurrence relations that generate iteratively the dimer-

RVB state of the four-|eg ladder. The empty box represents the FIG. 4. Graph that encodes the dimer configurations of the four-
singlet statéN) of the ladder withN rungs. A box with two dots on  leg ladder. The vertices are labeled by the legs cut between two
the legsi andj represents the stathl, o; ,0j), whereo; andg; are consecutive rungs. A link between two vertices represents cuts that
free spins that form valence bonds with nearest-neighbor spins Igshare a common rung. Every link is associated with a variational
cated in the same legs. We give explicitly the RR of the stateParameter of the RR’s. The link connecting (0) to itself means that
IN,o;,0). The RR’s of the other two-dotted states are similar. Thethe middle rung between the two cuts is a singlet that may be either
last RR is that of the four-dotted stas,o;,0,,03,04). 12 34, with amplitude 1 or 123, with amplitudeu,.
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FIG. 5. GS energy per site in units 8f of the four-leg dimer- JIJ'

RVB state with closed and open BC'’s and the two-leg ladder in the . ]
range 0<J/J'<1. We also plot the exact GS energies obtained by ~FIG- 6. Variational parameterd) of the closed BC dimer-RVB

extrapolating Lanzcos results to the thermodynamic limit with lad-in the range 8<J/J’<1. We include for comparison the value of
ders of sizes Xn (n=4,5,6,7). the variational parameter of the two-leg ladde?.

test ground for the goodness of the R\Whsatz up takes the constant value 1, which coincides with the
In Fig. 5 we plot the GS energy per site obtained with ourexactJ=0 result(2). This implies the absence of interfer-
variational Ansatzand the Lanczos method in the range ofence between rung and leg resonance.
couplings 0<J/J’<1. We also include for comparison the Uiy is greater than its two-leg analag’ For the isotropic
GS energy per site of the two-leg ladder. The GS energiegase one gets;,= 1.58 whileu=1.18° Simple resonance is
are very close to the exact result in the strong coupling reenhanced in the four-leg ladder.
gion 0<J/J’<0.3, but they get worse for larger couplings.  Vi234iS almost constant and less than one indicating de-
This is natural since configurations with longer bonds arestructive interference between resonances shearing a com-
expected to become more important in the weak interleg counon rung as in Fig. (h).
pling regime. The closed-rung ladder has a much lesser GS U3, displays an unexpected behavior since it first be-
energy per site than the open one. This is mainly due to theomes negative for small values 6fJ’, reaches a mini-
resonancg?2) between the two bonds along the rungs. Themum, and starts to grow becoming positive tid’'>0.6.
GS curves for open and closed ladders in Fig. 5 can be fittedhis peculiar behavior ofi,,34iS a sign of destructive inter-
with the formula, ference between resonances sharing two rungs.
In the case of open ladderd/=J",3"=0, one is left
Eo(N)/(4ANJ )= —ey—ey(J13)2—ey)(J13)*, (3 with seven independent variational parameters given by

U1234

®

_ Uij kI
(6g.01,0,)= 0.5, 0.15, —0.005, closed Ug, Uqp=Usgs, Ugg, Usg, V”'k':u.l.Ju ,
0:=1:=2/""10.404, 0.23, —0.05 open, 1=kl

wheregy is the energy per site of a single rung. Equati8h
agrees with perturbation theory up to second order.

Let us consider now the behavior of the variational pa-
rameters. In the closed-rung case the choice of coupling
J'=J"=J" implies the existence of a rotational symmetry
among the legs which leaves only four independent varia
tional parameters given by

In Fig. 7 we plot the values of these parameters in the
range 0<J/J’'<1. Some features that we encounter in Fig. 7
gave already appeared in the periodic case.

Uy stays almost constant with a value close to the exact
J=0 result(2).

U4, anduy, are quite similar, buti,; is much smaller. So
bonds do not like to resonate in the middle of the ladder.

y This is due to loss of energy induced by the existence of the
Ug, Upp=Ujj, V12,34:”—'k|, U1234 (4)  long bond 14 . . .
Uij Uk V15 34is lower than 1, as in the periodic case, by} »3is
much greater than 1, which is again due to the smallness of

In Fig. 6 we plot these parameters in the domain Ou,;. For graphical purposes we plot in Fig. 7 the inverse of

<J/J'<1. Let us comment on these results. V14 23.
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values taken by the variational parameters. The DMRG
method yieldst=5~ 10 for open ladders, while the QMC
15F method yieldsé=7.1 (closed and ¢&=10.3 (open.® As ex-

12 g Uy pected the dimer-RVB\nsatzgives a much shorter correla-
tion length but it reproduces the fact thf,sed< €open-

We have also studied the case when the Hamiltofilan
becomes that of two decoupled two-leg ladders, iX.,
1.0 F 1234 =J"=0. Curiously enough, ouAnsatzyields a GS with
Vizas bonds connecting the two ladders. The GS energy so ob-
tained is a bit lower than the one of two uncoupled two-leg
ladders and the correlation lengé=0.97 is larger than in
the uncoupled casé=0.79°

0.5F
u
c IV. CONCLUSIONS
I V{l,za In summary we have shown in this paper that the dimer-
Uy, RVB Ansatzgives a correct qualitative picture of the short-
0.0 - range RVB state of the four-leg ladder. We have found in-

teresting interference effects between resonating valence
T T T S bond configurations that should probably carry over more
00 02 04 06 08 1.0 realistic Ansdze which must include longer valence bonds.
JIJ The next step is to generalize our methods to the doped
four-leg ladders where one can study the phenomena of
FIG. 7. Variational parameter) of the open BC dimer-RVB  phase separation and stripe formattdn.Previous applica-
in the range 623/J'<1. tions of the RVA method to the two-letrJ ladder® the
necklace-J ladder!’ and the two-leg Hubbard mod¥ sug-

U34S also suppressed but in a smaller amount than €St that this goal is worth pursuing.
the periodic ladder.
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