4,135 research outputs found

    Reasoning by SVD and morphotronic network

    Full text link
    The immune system of the vertebrates possess the capabilities of "intelligent" information processing, which include memory, the ability to learn, to recognize, and to make decisions with respect to unknown situations. The mathematical formalization of these capabilities forms the basis of immune-computing (IC) as a new computing approach that replicates the principles of information processing by proteins and immune networks. This IC approach looks rather constructive as a basis for a new kind of computing. With the Morphotronic System or the analogous SVD we can create effective learning process and create immune memory by the projection operators. Given the immune memory is possible to recognize and compare antigen in a way to take defense action to eliminate the dangerous cell

    A new calculation of atmospheric neutrino flux: the FLUKA approach.

    Get PDF
    Abstract Preliminary results from a full 3-D calculation of atmospheric neutrino fluxes using the FLUKA interaction model are presented and compared to previous existing calculations. This effort is motivated mainly by the 3-D capability and the satisfactory degree of accuracy of the hadron-nucleus models embedded in the FLUKA code. Here we show examples of benchmarking tests of the model with cosmic ray experiment results. A comparison of our calculation of the atmospheric neutrino flux with that of the Bartol group, for E Μ > 1 GeV, is presented

    HEP Applications Evaluation of the EDG Testbed and Middleware

    Full text link
    Workpackage 8 of the European Datagrid project was formed in January 2001 with representatives from the four LHC experiments, and with experiment independent people from five of the six main EDG partners. In September 2002 WP8 was strengthened by the addition of effort from BaBar and D0. The original mandate of WP8 was, following the definition of short- and long-term requirements, to port experiment software to the EDG middleware and testbed environment. A major additional activity has been testing the basic functionality and performance of this environment. This paper reviews experiences and evaluations in the areas of job submission, data management, mass storage handling, information systems and monitoring. It also comments on the problems of remote debugging, the portability of code, and scaling problems with increasing numbers of jobs, sites and nodes. Reference is made to the pioneeering work of Atlas and CMS in integrating the use of the EDG Testbed into their data challenges. A forward look is made to essential software developments within EDG and to the necessary cooperation between EDG and LCG for the LCG prototype due in mid 2003.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics Conference (CHEP03), La Jolla, CA, USA, March 2003, 7 pages. PSN THCT00

    Light from the Cosmic Frontier: Gamma-Ray Bursts

    Full text link
    Gamma-Ray Bursts (GRBs) are the most powerful cosmic explosions since the Big Bang, and thus act as signposts throughout the distant Universe. Over the last 2 decades, these ultra-luminous cosmological explosions have been transformed from a mere curiosity to essential tools for the study of high-redshift stars and galaxies, early structure formation and the evolution of chemical elements. In the future, GRBs will likely provide a powerful probe of the epoch of reionisation of the Universe, constrain the properties of the first generation of stars, and play an important role in the revolution of multi-messenger astronomy by associating neutrinos or gravitational wave (GW) signals with GRBs. Here, we describe the next steps needed to advance the GRB field, as well as the potential of GRBs for studying the Early Universe and their role in the up-coming multi-messenger revolution.Comment: White paper submitted to ESA as a contribution to the deliberations on the science themes for the L2 and L3 mission opportunitie

    TeV Particle Astrophysics II: Summary comments

    Get PDF
    A unifying theme of this conference was the use of different approaches to understand astrophysical sources of energetic particles in the TeV range and above. In this summary I review how gamma-ray astronomy, neutrino astronomy and (to some extent) gravitational wave astronomy provide complementary avenues to understanding the origin and role of high-energy particles in energetic astrophysical sources.Comment: 6 pages, 4 figures; Conference summary talk for "TeV Particle Astrophysics II" at University of Wisconsin, Madison, 28-31 August 200

    New results on solar neutrino fluxes from 192 days of Borexino data

    Full text link
    We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos

    Search for Point Sources of High Energy Neutrinos with AMANDA

    Get PDF
    This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
    • 

    corecore