384 research outputs found

    Instability and Spatiotemporal Dynamics of Alternans in Paced Cardiac Tissue

    Get PDF
    We derive an equation that governs the spatiotemporal dynamics of small amplitude alternans in paced cardiac tissue. We show that a pattern-forming linear instability leads to the spontaneous formation of stationary or traveling waves whose nodes divide the tissue into regions with opposite phase of oscillation of action potential duration. This instability is important because it creates dynamically an heterogeneous electrical substrate for inducing fibrillation if the tissue size exceeds a fraction of the pattern wavelength. We compute this wavelength analytically as a function of three basic length scales characterizing dispersion and inter-cellular electrical coupling.Comment: 4 pages, 3 figures, submitted to PR

    Long-Lasting Consequences of Neonatal Maternal Separation on Social Behaviors in Ovariectomized Female Mice

    Get PDF
    Maternal separation (MS) stress is known to induce long-lasting alterations in emotional and anxiety-related behaviors, but effects on social behaviors are not well defined. The present study examined MS effects on female social behaviors in the social investigation (SIT) and social preference (SPT) tests, in addition to non-social behaviors in the open-field (OFT) and light-dark transition (LDT) tests in C57BL/6J mice. All females were tested as ovariectomized to eliminate confounding effects of endogenous estrogen during behavioral testing. Daily MS (3 hr) from postnatal day 1 to 14 did not affect anxiety levels in LDT, but were elevated in OFT with modified behavioral responses to the novel environment. Furthermore, MS altered social investigative behaviors and preference patterns toward unfamiliar stimulus mice in SIT and short- and long-term SPT paradigms. In SIT, MS reduced social investigation duration and increased number of stretched approaches towards both female and male unfamiliar stimulus mice, suggesting increased social anxiety levels in MS females. Similarly, MS heightened levels of social anxiety during short-term SPT but no MS effect on social preference was found. On the other hand, MS females displayed a distinctive preference for female stimuli, unlike control females, when tested for long-term SPT over a prolonged period of 5 days. Evaluation of FosB expression in the paraventricular nucleus, medial and central amygdala following stimulus exposure demonstrated greater number of FosB immunopositive cells in all three brain regions in MS females compared to control females. These results suggest that MS females might differ in neuroendocrine responses toward unfamiliar female and male opponents, which may be associated with modifications in social behaviors found in the present study. Taken together, this study provides new evidence that early life stress modifies female social behaviors by highlighting alterations in behavioral responses to situations involving social as well as non-social novelty

    Being Tamil, being Hindu:Tamil migrants’ negotiations of the absence of Tamil Hindu spaces in the West Midlands and South West of England

    Get PDF
    This paper considers the religious practices of Tamil Hindus who have settled in the West Midlands and South West of England in order to explore how devotees of a specific ethno-regional Hindu tradition with a well-established UK infrastructure in the site of its adherents’ population density adapt their religious practices in settlement areas which lack this infrastructure. Unlike the majority of the UK Tamil population who live in the London area, the participants in this study did not have ready access to an ethno-religious infrastructure of Tamil-orientated temples and public rituals. The paper examines two means by which this absence was addressed as well as the intersections and negotiations of religion and ethnicity these entailed: firstly, Tamil Hindus’ attendance of temples in their local area which are orientated towards a broadly imagined Hindu constituency or which cater to a non-Tamil ethno-linguistic or sectarian community; and, secondly, through the ‘DIY’ performance of ethnicised Hindu ritual in non-institutional settings

    Ubiquitination of CXCR7 Controls Receptor Trafficking

    Get PDF
    The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gαi-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process

    Regulation of GSK-3 Activity as A Shared Mechanism in Psychiatric Disorders

    Full text link
    Serin/Treonin kinaz ailesinin üyelerinden bir kinaz olarak ilk kez glikojen sentaz’ı inhibe ettiği keşfedilen glikojen sentaz kinaz-3 (GSK-3), günümüzde bilinen 50’den fazla substratı ile birçok hücre içi düzenleyici mekanizmada görev alan geniş etki spektrumlu bir enzim olarak kabul edilmektedir. GSK-3’ün memelilerde GSK-3α ve GSK-3β olmak üzere yapısal olarak yüksek homoloji gösteren iki izoformu bulunmaktadır. Her iki izoform birçok dokuda yaygın dağılım göstermekle beraber, en yüksek oranda beyinde bulunmakta ve genellikle benzer fonksiyonlar göstermektedirler. Diğer protein kinazların aksine GSK-3 uyarılmamış hücrede yapısal olarak aktif yani defosforile halde bulur. Protein kinaz A (PKA), protein kinaz B (PKB;AKT) ve protein kinaz C (PKC) gibi diğer protein kinazlarla fosforilasyona uğrayarak olarak inaktive edilir. Günümüzde artmış GSK-3 aktivitesinin major depresyon, bipolar bozukluk, hiperaktivite bozuklukları gibi hastalıklar ve şizofreni oluşumunda rol oynayabileceğine ilişkin önemli bulgular mevcuttur. Bu nedenle söz konusu psikiyatrik hastalıklarda arttığı gösterilen GSK-3 aktivitesinin azaltılmasının tedavide umut verici bir yaklaşım olabileceği kabul edilebilir. Bu gözden geçirme çalışmasında yukarıda sözü edilen psikiyatrik hastalıkların oluşmasında görev alan GSK-3 aracılı mekanizmalara kısaca değinilerek GSK-3’ün aktivitesinin düzenlenmesinde rol oynadığı gösterilen klinikte kullanılan ilaçlara yer verilmiştir. Anahtar sözcükler: GSK-3, depresyon, bipolar bozukluk, şizofren

    Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.

    Get PDF
    We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory
    • …
    corecore