We derive an equation that governs the spatiotemporal dynamics of small
amplitude alternans in paced cardiac tissue. We show that a pattern-forming
linear instability leads to the spontaneous formation of stationary or
traveling waves whose nodes divide the tissue into regions with opposite phase
of oscillation of action potential duration. This instability is important
because it creates dynamically an heterogeneous electrical substrate for
inducing fibrillation if the tissue size exceeds a fraction of the pattern
wavelength. We compute this wavelength analytically as a function of three
basic length scales characterizing dispersion and inter-cellular electrical
coupling.Comment: 4 pages, 3 figures, submitted to PR