4,571 research outputs found

    Uniformly Accelerated Mirrors. Part 1: Mean Fluxes

    Full text link
    The Davies-Fulling model describes the scattering of a massless field by a moving mirror in 1+1 dimensions. When the mirror travels under uniform acceleration, one encounters severe problems which are due to the infinite blue shift effects associated with the horizons. On one hand, the Bogoliubov coefficients are ill-defined and the total energy emitted diverges. On the other hand, the instantaneous mean flux vanishes. To obtained well-defined expressions we introduce an alternative model based on an action principle. The usefulness of this model is to allow to switch on and off the interaction at asymptotically large times. By an appropriate choice of the switching function, we obtain analytical expressions for the scattering amplitudes and the fluxes emitted by the mirror. When the coupling is constant, we recover the vanishing flux. However it is now followed by transients which inevitably become singular when the switching off is performed at late time. Our analysis reveals that the scattering amplitudes (and the Bogoliubov coefficients) should be seen as distributions and not as mere functions. Moreover, our regularized amplitudes can be put in a one to one correspondence with the transition amplitudes of an accelerated detector, thereby unifying the physics of uniformly accelerated systems. In a forthcoming article, we shall use our scattering amplitudes to analyze the quantum correlations amongst emitted particles which are also ill-defined in the Davies-Fulling model in the presence of horizons.Comment: 23 pages, 7 postscript figure

    From Vacuum Fluctuations to Radiation: Accelerated Detectors and Black Holes

    Full text link
    The vacuum fluctuations that induce the transitions and the thermalisation of a uniformly accelerated two level atom are studied in detail. Their energy content is revealed through the weak measurement formalism of Aharonov et al. It is shown that each time the detector makes a transition it radiates a Minkowski photon. The same analysis is then applied to the conversion of vacuum fluctuations into real quanta in the context of black hole radiation. Initially these fluctuations are located around the light like geodesic that shall generate the horizon and carry zero total energy. However upon exiting from the star they break up into two pieces one of which gradually acquires positive energy and becomes a Hawking quantum, the other, its ''partner", ends up in the singularity. As time goes by the vacuum fluctuations generating Hawking quanta have exponentially large energy densities. This implies that back reaction effects are large.Comment: definitive version, 39 pages and 5 figures available upon request from S.M., ULB-TH 94/0

    A simulation study of curved, descending, decelerating, landing approaches for transport aircraft

    Get PDF
    A system which is capable of controlling an aircraft automatically along a curved, descending, decelerating approach was described. A simulation study was conducted to determine the necessary modifications to the basic flight-proven control system. This basic system is presently being used to accomplish straight-in automatic landing approaches on a short-haul transport aircraft (B-737 terminal configured vehicle). This study shows that both 3 deg (normal) and 5 deg (steep) approaches could be accomplished with only minor modifications to the basic control system

    Biochemical correlates of cardiac hypertrophy. IV. Observations on the cellular organization of growth during myocardial hypertrophy in the rat

    Get PDF
    The mechanisms by which the DNA content of the heart increases following acutely induced cardiac hypertrophy were investigated in mature Sprague-Dawley rats. Special attention was given to the cellular organization of the growth process. Autoradiographic studies provided conclusive evidence that the uptake of tritiated thymidine is completely limited to nonmuscular cellular elements, chiefly connective tissue cells. The frequency of labeled nuclei was increased by sixfold during hypertrophy. The thymidine pool was not appreciably different in the hypertrophied hearts. Connective tissue nuclei formed a larger proportion of the total nuclear population in hypertrophied hearts, and their distribution was less uniform than in the normal heart. Quantitative histologic studies also showed that the total number of left ventricular muscle cell nuclei did not increase during hypertrophy but rather may have decreased slightly. Both the concentration and the total amount of hydroxyproline increased in parallel with the proliferative changes in the connective tissue and provide further supportive evidence to the autoradiographic and histologic studies

    Hawking Radiation from Feynman Diagrams

    Get PDF
    The aim of this letter is to clarify the relationships between Hawking radiation and the scattering of light by matter falling into a black hole. To this end we analyze the S-matrix elements of a model composed of a massive infalling particle (described by a quantized field) and the radiation field. These fields are coupled by current-current interactions and propagate in the Schwarzschild geometry. As long as the photons energy is much smaller than the mass of the infalling particle, one recovers Hawking radiation since our S-matrix elements identically reproduce the Bogoliubov coefficients obtained by treating the trajectory of the infalling particle classically. But after a brief period, the energy of the `partners' of Hawking photons reaches this mass and the production of thermal photons through these interactions stops. The implications of this result are discussed.Comment: 12 pages, revtex, no figure

    Radiation from a uniformly accelerating harmonic oscillator

    Full text link
    We consider a radiation from a uniformly accelerating harmonic oscillator whose minimal coupling to the scalar field changes suddenly. The exact time evolutions of the quantum operators are given in terms of a classical solution of a forced harmonic oscillator. After the jumping of the coupling constant there occurs a fast absorption of energy into the oscillator, and then a slow emission follows. Here the absorbed energy is independent of the acceleration and proportional to the log of a high momentum cutoff of the field. The emitted energy depends on the acceleration and also proportional to the log of the cutoff. Especially, if the coupling is comparable to the natural frequency of the detector (e2/(4m)ω0e^2/(4m) \sim \omega_0) enormous energies are radiated away from the oscillator.Comment: 26 pages, 1 eps figure, RevTeX, minor correction in grammar, add a discussio

    High Energy Break and Reflection Features in the Seyfert Galaxy MCG+8-11-11

    Get PDF
    We present the results from ASCA and OSSE simultaneous observations of the Seyfert 1.5 galaxy MCG+8-11-11 performed in August-September 1995. The ASCA observations indicate a modest flux increase (20%) in 3 days, possibly correlated to a softening of the 0.6-9 keV spectrum. The spectrum is well described by a hard power law (Gamma=1.64) absorbed by a column density slightly larger than the Galactic value, with an iron line at 6.4 keV of EW=400 eV. The simultaneous OSSE data are characterized by a much softer power law with photon index Gamma=3.0, strongly suggesting the presence of a spectral break in the hard X/soft gamma-ray band. A joint fit to OSSE and ASCA data clearly shows an exponential cut-off at about 300 keV, and strong reflection component. MCG+8-11-11 features a spectral break in the underlying continuum unambiguously. This, together with the inferred low compactness of this source, favours thermal or quasi-thermal electron Comptonization in a structured Corona as the leading process of high energy radiation production.Comment: 13 pages, + 4 figure.ps AAS LateX [11pt,aasms4]{article} To be published in ApJ, Main Journa

    Domain wall dynamics in expanding spaces

    Get PDF
    We study the effects on the dynamics of kinks due to expansions and contractions of the space. We show that the propagation velocity of the kink can be adiabatically tuned through slow expansions/contractions, while its width is given as a function of the velocity. We also analyze the case of fast expansions/contractions, where we are no longer on the adiabatic regime. In this case the kink moves more slowly after an expansion-contraction cycle as a consequence of loss of energy through radiation. All these effects are numerically studied in the nonlinear Klein-Gordon equations (both for the sine-Gordon and for the phi^4 potential), and they are also studied within the framework of the collective coordinate evolution equations for the width and the center of mass of the kink. These collective coordinate evolution equations are obtained with a procedure that allows us to consider even the case of large expansions/contractions.Comment: LaTeX, 18 pages, 2 figures, improved version to appear in Phys Rev
    corecore