The Davies-Fulling model describes the scattering of a massless field by a
moving mirror in 1+1 dimensions. When the mirror travels under uniform
acceleration, one encounters severe problems which are due to the infinite blue
shift effects associated with the horizons. On one hand, the Bogoliubov
coefficients are ill-defined and the total energy emitted diverges. On the
other hand, the instantaneous mean flux vanishes. To obtained well-defined
expressions we introduce an alternative model based on an action principle. The
usefulness of this model is to allow to switch on and off the interaction at
asymptotically large times. By an appropriate choice of the switching function,
we obtain analytical expressions for the scattering amplitudes and the fluxes
emitted by the mirror. When the coupling is constant, we recover the vanishing
flux. However it is now followed by transients which inevitably become singular
when the switching off is performed at late time. Our analysis reveals that the
scattering amplitudes (and the Bogoliubov coefficients) should be seen as
distributions and not as mere functions. Moreover, our regularized amplitudes
can be put in a one to one correspondence with the transition amplitudes of an
accelerated detector, thereby unifying the physics of uniformly accelerated
systems. In a forthcoming article, we shall use our scattering amplitudes to
analyze the quantum correlations amongst emitted particles which are also
ill-defined in the Davies-Fulling model in the presence of horizons.Comment: 23 pages, 7 postscript figure