The vacuum fluctuations that induce the transitions and the thermalisation of
a uniformly accelerated two level atom are studied in detail. Their energy
content is revealed through the weak measurement formalism of Aharonov et al.
It is shown that each time the detector makes a transition it radiates a
Minkowski photon. The same analysis is then applied to the conversion of vacuum
fluctuations into real quanta in the context of black hole radiation. Initially
these fluctuations are located around the light like geodesic that shall
generate the horizon and carry zero total energy. However upon exiting from the
star they break up into two pieces one of which gradually acquires positive
energy and becomes a Hawking quantum, the other, its ''partner", ends up in the
singularity. As time goes by the vacuum fluctuations generating Hawking quanta
have exponentially large energy densities. This implies that back reaction
effects are large.Comment: definitive version, 39 pages and 5 figures available upon request
from S.M., ULB-TH 94/0