537 research outputs found
Zipf's law in Nuclear Multifragmentation and Percolation Theory
We investigate the average sizes of the largest fragments in nuclear
multifragmentation events near the critical point of the nuclear matter phase
diagram. We perform analytic calculations employing Poisson statistics as well
as Monte Carlo simulations of the percolation type. We find that previous
claims of manifestations of Zipf's Law in the rank-ordered fragment size
distributions are not born out in our result, neither in finite nor infinite
systems. Instead, we find that Zipf-Mandelbrot distributions are needed to
describe the results, and we show how one can derive them in the infinite size
limit. However, we agree with previous authors that the investigation of
rank-ordered fragment size distributions is an alternative way to look for the
critical point in the nuclear matter diagram.Comment: 8 pages, 11 figures, submitted to PR
Can dissipation prevent explosive decomposition in high-energy heavy ion collisions?
We discuss the role of dissipation in the explosive spinodal decomposition
scenario of hadron production during the chiral transition after a high-energy
heavy ion collision. We use a Langevin description inspired by microscopic
nonequilibrium field theory results to perform real-time lattice simulations of
the behavior of the chiral fields. We show that the effect of dissipation can
be dramatic. Analytic results for the short-time dynamics are also presented.Comment: 9 latex pages, 4 eps figures, version to appear in Phys. Lett.
Standardizing Type Ia Supernova Absolute Magnitudes Using Gaussian Process Data Regression
We present a novel class of models for Type Ia supernova time-evolving
spectral energy distributions (SED) and absolute magnitudes: they are each
modeled as stochastic functions described by Gaussian processes. The values of
the SED and absolute magnitudes are defined through well-defined regression
prescriptions, so that data directly inform the models. As a proof of concept,
we implement a model for synthetic photometry built from the spectrophotometric
time series from the Nearby Supernova Factory. Absolute magnitudes at peak
brightness are calibrated to 0.13 mag in the -band and to as low as 0.09 mag
in the blueshifted -band, where the dispersion includes
contributions from measurement uncertainties and peculiar velocities. The
methodology can be applied to spectrophotometric time series of supernovae that
span a range of redshifts to simultaneously standardize supernovae together
with fitting cosmological parameters.Comment: 47 pages, 15 figures, accepted for publication by Astrophysical
Journa
Host Galaxy Properties and Hubble Residuals of Type Ia Supernovae from the Nearby Supernova Factory
We examine the relationship between Type Ia Supernova (SN Ia) Hubble
residuals and the properties of their host galaxies using a sample of 115 SNe
Ia from the Nearby Supernova Factory (SNfactory). We use host galaxy stellar
masses and specific star-formation rates fitted from photometry for all hosts,
as well as gas-phase metallicities for a subset of 69 star-forming (non-AGN)
hosts, to show that the SN Ia Hubble residuals correlate with each of these
host properties. With these data we find new evidence for a correlation between
SN Ia intrinsic color and host metallicity. When we combine our data with those
of other published SN Ia surveys, we find the difference between mean SN Ia
brightnesses in low and high mass hosts is 0.077 +- 0.014 mag. When viewed in
narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus
of Hubble residuals at high and low host masses with a rapid transition over a
short mass range (9.8 <= log(M_*/M_Sun) <= 10.4). Although metallicity has been
a favored interpretation for the origin of the Hubble residual trend with host
mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor
age both evolve along the galaxy mass sequence, thereby presenting equally
viable explanations for some or all of the observed SN Ia host bias.Comment: 20 pages, 11 figures, accepted for publication in Ap
Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory
We present photometric and spectroscopic observations of galaxies hosting
Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory
(SNfactory). Combining GALEX UV data with optical and near infrared photometry,
we employ stellar population synthesis techniques to measure SN Ia host galaxy
stellar masses, star-formation rates (SFRs), and reddening due to dust. We
reinforce the key role of GALEX UV data in deriving accurate estimates of
galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are
fitted simultaneously for their stellar continua and emission lines fluxes,
from which we derive high precision redshifts, gas-phase metallicities, and
Halpha-based SFRs. With these data we show that SN Ia host galaxies present
tight agreement with the fiducial galaxy mass-metallicity relation from SDSS
for stellar masses log(M_*/M_Sun)>8.5 where the relation is well-defined. The
star-formation activity of SN Ia host galaxies is consistent with a sample of
comparable SDSS field galaxies, though this comparison is limited by systematic
uncertainties in SFR measurements. Our analysis indicates that SN Ia host
galaxies are, on average, typical representatives of normal field galaxies.Comment: 25 pages, 13 figures, accepted for publication in Ap
Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory
Context. Our Local Group of galaxies appears to be moving relative to the
cosmic microwave background with the source of the peculiar motion still
uncertain. While in the past this has been studied mostly using galaxies as
distance indicators, the weight of type Ia supernovae (SNe Ia) has increased
recently with the continuously improving statistics of available low-redshift
supernovae.
Aims. We measured the bulk flow in the nearby universe ()
using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the
Union2 compilation of SN Ia data already in the literature.
Methods. The bulk flow velocity was determined from SN data binned in
redshift shells by including a coherent motion (dipole) in a cosmological fit.
Additionally, a method of spatially smoothing the Hubble residuals was used to
verify the results of the dipole fit. To constrain the location and mass of a
potential mass concentration (e.g., the Shapley supercluster) responsible for
the peculiar motion, we fit a Hubble law modified by adding an additional mass
concentration.
Results. The analysis shows a bulk flow that is consistent with the direction
of the CMB dipole up to , thereby doubling the volume over which
conventional distance measures are sensitive to a bulk flow. We see no
significant turnover behind the center of the Shapley supercluster. A simple
attractor model in the proximity of the Shapley supercluster is only marginally
consistent with our data, suggesting the need for another, more distant source.
In the redshift shell , we constrain the bulk flow velocity to
(68% confidence level) for the direction of the CMB
dipole, in contradiction to recent claims of the existence of a large-amplitude
dark flow.Comment: 12 pages, 5 figures, added corrigendum
(http://adsabs.harvard.edu/abs/2015A%26A...578C...1F
Initial Results of the S3-Humerus Plate
Fractures of the humeral head account for 5% of all fractures and incidence increases with age. Depending on fracture form and patients age a wide variety of therapeutical options exist. Stable fractures can be treated conservatively, while the majority of unstable and displaced fractures require surgical treatment. Many different surgical options are available; open reduction and internal fixation are widely preferred. The S3 Proximal Humerus Plate is a contoured plate to match the complex shape of the proximal humerus. It is designed to be positioned distal to the greater tuberosity preventing subacromial impingement
In search of the QCD-Gravity correspondence
Quantum Chromodynamics (QCD) is the fundamental theory of strong
interactions. It describes the behavior of quarks and gluons which are the
smallest known constituents of nuclear matter. The difficulties in solving the
theory at low energies in the strongly interacting, non-perturbative regime
have left unanswered many important questions in QCD, such as the nature of
confinement or the mechanism of hadronization. In these lectures oriented
towards the students we introduce two classes of dualities that attempt to
reproduce many of the features of QCD, while making the treatment at strong
coupling more tractable: (1) the AdS/CFT correspondence between a specific
class of string theories and a conformal field theory and (2) an effective
low-energy theory of QCD dual to classical QCD on a curved conformal
gravitational background. The hope is that by applying these dualities to the
evaluation of various properties of the strongly-interacting matter produced in
heavy ion collisions one can understand how QCD behaves at strong coupling. We
give an outline of the applications, with emphasis on two transport
coefficients of QCD matter -- shear and bulk viscosities.Comment: 31 pages, 7 figures; Lectures delivered by D. Kharzeev at the
International QGP Winter School, Jaipur, India, February 1-3, 200
Constraining Type Ia supernova models: SN 2011fe as a test case
The nearby supernova SN 2011fe can be observed in unprecedented detail.
Therefore, it is an important test case for Type Ia supernova (SN Ia) models,
which may bring us closer to understanding the physical nature of these
objects. Here, we explore how available and expected future observations of SN
2011fe can be used to constrain SN Ia explosion scenarios. We base our
discussion on three-dimensional simulations of a delayed detonation in a
Chandrasekhar-mass white dwarf and of a violent merger of two white
dwarfs-realizations of explosion models appropriate for two of the most
widely-discussed progenitor channels that may give rise to SNe Ia. Although
both models have their shortcomings in reproducing details of the early and
near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory
(SNfactory), the overall match with the observations is reasonable. The level
of agreement is slightly better for the merger, in particular around maximum,
but a clear preference for one model over the other is still not justified.
Observations at late epochs, however, hold promise for discriminating the
explosion scenarios in a straightforward way, as a nucleosynthesis effect leads
to differences in the 55Co production. SN 2011fe is close enough to be followed
sufficiently long to study this effect.Comment: Accepted for publication in The Astrophysical Journal Letter
- …