2,894 research outputs found

    Xeff analysis method optimization to enhance IACTs performances

    Full text link
    The seek of high precision analyses in γ\gamma-ray astronomy leads to the implementation of multivariate combination, benefiting from several reconstruction methods. Such analysis, called XeffX_{eff}, was developed for the H.E.S.S. data using three shower reconstruction methods. This paper presents the improvement granted to this analysis by refining the distribution calculation of discriminant variables, considering observation conditions, and adding new variables in the XeffX_{eff} combination. The efficiency of the analysis is presented using simulations and real data. A comparison with the standard analysis (model++), for a typical set of sources, shows a significant gain in sensitivity.Comment: Contribution to the Proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherland

    Contamination of stellar-kinematic samples and uncertainty about dark matter annihilation profiles in ultrafaint dwarf galaxies: the example of Segue I

    Full text link
    The expected gamma-ray flux coming from dark matter annihilation in dwarf spheroidal (dSph) galaxies depends on the so-called `J-factor', the integral of the squared dark matter density along the line-of-sight. We examine the degree to which estimates of J are sensitive to contamination (by foreground Milky Way stars and stellar streams) of the stellar-kinematic samples that are used to infer dark matter densities in `ultrafaint' dSphs. Applying standard kinematic analyses to hundreds of mock data sets that include varying levels of contamination, we find that mis-classified contaminants can cause J-factors to be overestimated by orders of magnitude. Stellar-kinematic data sets for which we obtain such biased estimates tend 1) to include relatively large fractions of stars with ambiguous membership status, and 2) to give estimates for J that are sensitive to specific choices about how to weight and/or to exclude stars with ambiguous status. Comparing publicly-available stellar-kinematic samples for the nearby dSphs Reticulum~II and Segue~I, we find that only the latter displays both of these characteristics. Estimates of Segue~I's J-factor should therefore be regarded with a larger degree of caution when planning and interpreting gamma-ray observations. Moreover, robust interpretations regarding dark matter annihilation in dSph galaxies in general will require explicit examination of how interlopers might affect the inferred dark matter density profile.Comment: 12 pages, 8 figures. New appendix A (joint light/dark matter likelihood), results unchanged. Match accepted MNRAS versio

    Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - Impact of physical parameters and triaxiality

    Full text link
    Dwarf spheroidal (dSph) galaxies are among the most promising targets for the indirect detection of dark matter (DM) from annihilation and/or decay products. Empirical estimates of their DM content - and hence the magnitudes of expected signals - rely on inferences from stellar-kinematic data. However, various kinematic analyses can give different results and it is not obvious which are most reliable. Using extensive sets of mock data of various sizes (mimicking 'ultra-faint' and 'classical' dSphs) and an MCMC engine, here we investigate biases, uncertainties, and limitations of analyses based on parametric solutions to the spherical Jeans equation. For a variety of functional forms for the tracer and DM density profiles, as well as the orbital anisotropy profile, we examine reliability of estimates for the astrophysical J- and D-factors for annihilation and decay, respectively. For large (N > 1000) stellar-kinematic samples typical of 'classical' dSphs, errors tend to be dominated by systematics, which can be reduced through the use of sufficiently general and flexible functional forms. For small (N < 100) samples typical of 'ultrafaints', statistical uncertainties tend to dominate systematic errors and flexible models are less necessary. We define an optimal strategy that would mitigate sensitivity to priors and other aspects of analyses based on the spherical Jeans equation. We also find that the assumption of spherical symmetry can bias estimates of J (with the 95% credibility intervals not encompassing the true J-factor) when the object is mildly triaxial (axis ratios b/a = 0.8, c/a = 0.6). A concluding table summarises the typical error budget and biases for the different sample sizes considered.Comment: 21 pages, 20 figures. Minor changes (several clarifications): match the MNRAS accepted versio

    Neutron monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    Full text link
    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation φ\varphi (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10\% level on φ\varphi values. We find no clear ranking of the dominant effects, as some depend on the station position and/or the weather and/or the season. An abacus to translate any variation of count rates (for neutron and μ\mu detectors) to a variation of the solar modulation φ\varphi is provided.Comment: 28 pages, 16 figures, 9 tables, match accepted version in AdSR (minor corrections, Dorman (1974,2004,2009) reference textbooks added

    Neutron monitors and muon detectors for solar modulation studies: 2. ϕ\phi time series

    Full text link
    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter ϕ\phi (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference ϕ\phi time series from neutron monitor data. We show that we can have an unbiased and accurate ϕ\phi reconstruction (Δϕ/ϕ10%\Delta\phi/\phi\simeq 10\%). We also discuss the potential of Bonner spheres spectrometers and muon detectors to provide ϕ\phi time series. Two by-products of this calculation are updated ϕ\phi values for the cosmic-ray database and a web interface to retrieve and plot ϕ\phi from the 50's to today (\url{http://lpsc.in2p3.fr/crdb}).Comment: 15 pages, 5 figures, 2 tables. AdSR, in press. Web interface to get modulation parameter phi(t): new tab in http://lpsc.in2p3.fr/crd

    Variation of the X-ray non-thermal emission in the Arches cloud

    Full text link
    The origin of the iron fluorescent line at 6.4 keV from an extended region surrounding the Arches cluster is debated and the non-variability of this emission up to 2009 has favored the low-energy cosmic-ray origin over a possible irradiation by hard X-rays. By probing the variability of the Arches cloud non-thermal emission in the most recent years, including a deep observation in 2012, we intend to discriminate between the two competing scenarios. We perform a spectral fit of XMM-Newton observations collected from 2000 to 2013 in order to build the Arches cloud lightcurve corresponding to both the neutral Fe Kalpha line and the X-ray continuum emissions. We reveal a 30% flux drop in 2012, detected with more than 4 sigma significance for both components. This implies that a large fraction of the studied non-thermal emission is due to the reflection of an X-ray transient source.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter

    Constraints on WIMP Dark Matter from the High Energy PAMELA pˉ/p\bar{p}/p data

    Get PDF
    A new calculation of the pˉ/p\bar{p}/p ratio in cosmic rays is compared to the recent PAMELA data. The good match up to 100 GeV allows to set constraints on exotic contributions from thermal WIMP dark matter candidates. We derive stringent limits on possible enhancements of the WIMP \pbar flux: a mWIMPm_{\rm WIMP}=100 GeV (1 TeV) signal cannot be increased by more than a factor 6 (40) without overrunning PAMELA data. Annihilation through the W+WW^+W^- channel is also inspected and cross-checked with e+/(e+e+)e^+/(e^-+e^+) data. This scenario is strongly disfavored as it fails to simultaneously reproduce positron and antiproton measurements.Comment: 5 pages, 5 figures, the bibliography has been updated, minor modifications have been made in the tex

    Sensitivity studies for the cubic-kilometre deep-sea neutrino telescope KM3NeT

    Full text link
    The observation of high-energy neutrinos from astrophysical sources would substantially improve our knowledge and understanding of the non-thermal processes in these sources, and would in particular pinpoint the accelerators of cosmic rays. The sensitivity of different design options for a future cubic-kilometre scale neutrino telescope in the Mediterranean Sea is investigated for generic point sources and in particular for some of the galactic objects from which TeV gamma emmission has recently been observed by the H.E.S.S. atmospheric Cherenkov telescope. The effect of atmospheric background on the source detection probabilities has been taken into account through full simulation. The estimated event rates are compared to previous results and limits from present neutrino telescopes.Comment: 4 pages, 1 figure, contribution of the 30th International Cosmic Ray conferenc

    Thermodynamic insight into stimuli-responsive behaviour of soft porous crystals

    Get PDF
    Knowledge of the thermodynamic potential in terms of the independent variables allows to characterize the macroscopic state of the system. However, in practice, it is difficult to access this potential experimentally due to irreversible transitions that occur between equilibrium states. A showcase example of sudden transitions between (meta) stable equilibrium states is observed for soft porous crystals possessing a network with long-range structural order, which can transform between various states upon external stimuli such as pressure, temperature and guest adsorption. Such phase transformations are typically characterized by large volume changes and may be followed experimentally by monitoring the volume change in terms of certain external triggers. Herein, we present a generalized thermodynamic approach to construct the underlying Helmholtz free energy as a function of the state variables that governs the observed behaviour based on microscopic simulations. This concept allows a unique identification of the conditions under which a material becomes flexible
    corecore