2,720 research outputs found

    Credit Delivery to Philippine Rural Enterprises: Issues and Policy Framework

    Get PDF

    Mechanism for flux guidance by micrometric antidot arrays in superconducting films

    Get PDF
    A study of magnetic flux penetration in a superconducting film patterned with arrays of micron sized antidots (microholes) is reported. Magneto-optical imaging (MOI) of a YBCO film shaped as a long strip with perpendicular antidot arrays revealed both strong guidance of flux, and at the same time large perturbations of the overall flux penetration and flow of current. These results are compared with a numerical flux creep simulation of a thin superconductor with the same antidot pattern. To perform calculations on such a complex geometry, an efficient numerical scheme for handling the boundary conditions of the antidots and the nonlocal electrodynamics was developed. The simulations reproduce essentially all features of the MOI results. In addition, the numerical results give insight into all other key quantities, e.g., the electrical field, which becomes extremely large in the narrow channels connecting the antidots.Comment: 8 pages, 7 figure

    Generalized information entropies depending only on the probability distribution

    Full text link
    Systems with a long-term stationary state that possess as a spatio-temporally fluctuation quantity β\beta can be described by a superposition of several statistics, a "super statistics". We consider first, the Gamma, log-normal and FF-distributions of β\beta. It is assumed that they depend only on plp_l, the probability associated with the microscopic configuration of the system. For each of the three β−\beta-distributions we calculate the Boltzmann factors and show that they coincide for small variance of the fluctuations. For the Gamma distribution it is possible to calculate the entropy in a closed form, depending on plp_l, and to obtain then an equation relating plp_l with βEl\beta E_l. We also propose, as other examples, new entropies close related with the Kaniadakis and two possible Sharma-Mittal entropies. The entropies presented in this work do not depend on a constant parameter qq but on plp_l. For the plp_l-Gamma distribution and its corresponding Bpl(E)B_{p_l}(E) Boltzmann factor and the associated entropy, we show the validity of the saddle-point approximation. We also briefly discuss the generalization of one of the four Khinchin axioms to get this proposed entropy.Comment: 13 pages, 3 figure

    The Orbit of the New Milky Way Globular Cluster FSR1716 =VVV-GC05

    Get PDF
    Indexación: Scopus.We use deep, multi-epoch near-IR images of the VISTA Variables in the Via Lictea (VVV) Survey to measure proper motions (PMs) of stars in the Milky Way globular cluster (GC) FSR1716 = VVV-GC05. The colormagnitude diagram of this object, made by using PM-selected members, shows an extended horizontal branch, nine confirmed RR Lyrae (RRL) members in the instability strip, and possibly several hotter stars extending to the blue. Based on the fundamental-mode (ab-type) RRL stars that move coherently with the cluster, we confirmed that FSR1716 is an Oosterhoff I GC with a mean period aPabn = 0.574 days. Intriguingly, we detect tidal extensions to both sides of this cluster in the spatial distribution of PM-selected member stars. Also, one of the confirmed RRabs is located -11 arcmin in projection from the cluster center, suggesting that FSR1716 may be losing stars due to the gravitational interaction with the Galaxy. We also measure radial velocities (RVs) for five cluster red giants selected using the PMs. The combination of RVs and PMs allow us to compute for the first time the orbit of this GC, using an updated Galactic potential. The orbit results to be confined within|Zmax| < 2.0 kpc, and has eccentricity 0.4 < e < 0.6, with perigalactic distance 1.5 < Rperi (kpc) < 2.3, and apogalactic distance 5.3 < Rapo (kpc) < 6.4. We conclude that, in agreement with its relatively low metallicity ([Fe/H] =-1.4 dex), this is an inner-halo GC plunging into the disk of the Galaxy. As such, this is a unique object with which to test the dynamical processes that contribute to the disruption of Galactic GCs. © 2018. The American Astronomical Society. All rights reserved.https://iopscience.iop.org/article/10.3847/1538-4357/aacd0

    Lattice effects and current reversal in superconducting ratchets

    Get PDF
    Competition between the vortex lattice and a lattice of asymmetric artificial defects is shown to play a crucial role in ratchet experiments in superconducting films. We present a novel and collective mechanism for current reversal based on a reconfiguration of the vortex lattice. In contrast to previous models of vortex current reversal, the mechanism is based on the global response of the vortex lattice to external forces.Comment: 12 pages, 7 figure
    • …
    corecore