5,732 research outputs found

    Enstrophy dissipation in two-dimensional turbulence

    Full text link
    Insight into the problem of two-dimensional turbulence can be obtained by an analogy with a heat conduction network. It allows the identification of an entropy function associated to the enstrophy dissipation and that fluctuates around a positive (mean) value. While the corresponding enstrophy network is highly nonlocal, the direction of the enstrophy current follows from the Second Law of Thermodynamics. An essential parameter is the ratio Tk=γk/(νk2)T_k = \gamma_k /(\nu k^2) of the intensity of driving γk>0\gamma_k>0 as a function of wavenumber kk, to the dissipation strength νk2\nu k^2, where ν\nu is the viscosity. The enstrophy current flows from higher to lower values of TkT_k, similar to a heat current from higher to lower temperature. Our probabilistic analysis of the enstrophy dissipation and the analogy with heat conduction thus complements and visualizes the more traditional spectral arguments for the direct enstrophy cascade. We also show a fluctuation symmetry in the distribution of the total entropy production which relates the probabilities of direct and inverse enstrophy cascades.Comment: 8 pages, revtex

    Nonequilibrium Linear Response for Markov Dynamics, II: Inertial Dynamics

    Full text link
    We continue our study of the linear response of a nonequilibrium system. This Part II concentrates on models of open and driven inertial dynamics but the structure and the interpretation of the result remain unchanged: the response can be expressed as a sum of two temporal correlations in the unperturbed system, one entropic, the other frenetic. The decomposition arises from the (anti)symmetry under time-reversal on the level of the nonequilibrium action. The response formula involves a statistical averaging over explicitly known observables but, in contrast with the equilibrium situation, they depend on the model dynamics in terms of an excess in dynamical activity. As an example, the Einstein relation between mobility and diffusion constant is modified by a correlation term between the position and the momentum of the particle

    Depression and sickness behavior are Janus-faced responses to shared inflammatory pathways

    Get PDF
    It is of considerable translational importance whether depression is a form or a consequence of sickness behavior. Sickness behavior is a behavioral complex induced by infections and immune trauma and mediated by pro-inflammatory cytokines. It is an adaptive response that enhances recovery by conserving energy to combat acute inflammation. There are considerable phenomenological similarities between sickness behavior and depression, for example, behavioral inhibition, anorexia and weight loss, and melancholic (anhedonia), physio-somatic (fatigue, hyperalgesia, malaise), anxiety and neurocognitive symptoms. In clinical depression, however, a transition occurs to sensitization of immuno-inflammatory pathways, progressive damage by oxidative and nitrosative stress to lipids, proteins, and DNA, and autoimmune responses directed against self-epitopes. The latter mechanisms are the substrate of a neuroprogressive process, whereby multiple depressive episodes cause neural tissue damage and consequent functional and cognitive sequelae. Thus, shared immuno-inflammatory pathways underpin the physiology of sickness behavior and the pathophysiology of clinical depression explaining their partially overlapping phenomenology. Inflammation may provoke a Janus-faced response with a good, acute side, generating protective inflammation through sickness behavior and a bad, chronic side, for example, clinical depression, a lifelong disorder with positive feedback loops between (neuro)inflammation and (neuro)degenerative processes following less well defined triggers

    Loneliness Across the Life Span

    Get PDF
    Most people have experienced loneliness and have been able to overcome it to reconnect with other people. In the current review, we provide a life-span perspective on one component of the evolutionary theory of loneliness—a component we refer to as the reaffiliation motive (RAM). The RAM represents the motivation to reconnect with others that is triggered by perceived social isolation. Loneliness is often a transient experience because the RAM leads to reconnection, but sometimes this motivation can fail, leading to prolonged loneliness. We review evidence of how aspects of the RAM change across development and how these aspects can fail for different reasons across the life span. We conclude with a discussion of age-appropriate interventions that may help to alleviate prolonged lonelines

    Magneto-optical study of electron occupation and hole wave functions in stacked self-assembled InP quantum dots

    Get PDF
    We have studied the magnetophotoluminescence of doubly stacked layers of self-assembled InP quantum dots in a GaInP matrix. 4.0±0.1 monolayers of InP were deposited in the lower layer of each sample, whereas in the upper layer 3.9, 3.4, and 3.0 monolayers were used. Low-temperature photoluminescence measurements in zero magnetic field are used to show that, in each case, only one layer of dots is occupied by an electron, and imply that when the amount of InP in both layers is the same, the dots in the upper layer are larger. High-field photoluminescence data reveal that the position and extent of the hole wave function are strongly dependent on the amount of InP in the stack. ©2001 American Institute of Physics

    A meaningful expansion around detailed balance

    Full text link
    We consider Markovian dynamics modeling open mesoscopic systems which are driven away from detailed balance by a nonconservative force. A systematic expansion is obtained of the stationary distribution around an equilibrium reference, in orders of the nonequilibrium forcing. The first order around equilibrium has been known since the work of McLennan (1959), and involves the transient irreversible entropy flux. The expansion generalizes the McLennan formula to higher orders, complementing the entropy flux with the dynamical activity. The latter is more kinetic than thermodynamic and is a possible realization of Landauer's insight (1975) that, for nonequilibrium, the relative occupation of states also depends on the noise along possible escape routes. In that way nonlinear response around equilibrium can be meaningfully discussed in terms of two main quantities only, the entropy flux and the dynamical activity. The expansion makes mathematical sense as shown in the simplest cases from exponential ergodicity.Comment: 19 page

    Thermoelectric phenomena via an interacting particle system

    Full text link
    We present a mesoscopic model for thermoelectric phenomena in terms of an interacting particle system, a lattice electron gas dynamics that is a suitable extension of the standard simple exclusion process. We concentrate on electronic heat and charge transport in different but connected metallic substances. The electrons hop between energy-cells located alongside the spatial extension of the metal wire. When changing energy level, the system exchanges energy with the environment. At equilibrium the distribution satisfies the Fermi-Dirac occupation-law. Installing different temperatures at two connections induces an electromotive force (Seebeck effect) and upon forcing an electric current, an additional heat flow is produced at the junctions (Peltier heat). We derive the linear response behavior relating the Seebeck and Peltier coefficients as an application of Onsager reciprocity. We also indicate the higher order corrections. The entropy production is characterized as the anti-symmetric part under time-reversal of the space-time Lagrangian.Comment: 19 pages, 2 figures, submitted to Journal of Physics

    Chronic fatigue syndrome: Harvey and Wessely's (bio)psychosocial model versus a bio(psychosocial) model based on inflammatory and oxidative and nitrosative stress pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a recently published paper, Harvey and Wessely put forward a 'biopsychosocial' explanatory model for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), which is proposed to be applicable to (chronic) fatigue even when apparent medical causes are present.</p> <p>Methods</p> <p>Here, we review the model proposed by Harvey and Wessely, which is the rationale for behaviourally oriented interventions, such as cognitive behaviour therapy (CBT) and graded exercise therapy (GET), and compare this model with a biological model, in which inflammatory, immune, oxidative and nitrosative (IO&NS) pathways are key elements.</p> <p>Discussion</p> <p>Although human and animal studies have established that the pathophysiology of ME/CFS includes IO&NS pathways, these abnormalities are not included in the model proposed by Harvey and Wessely. Activation of IO&NS pathways is known to induce fatigue and somatic (F&S) symptoms and can be induced or maintained by viral and bacterial infections, physical and psychosocial stressors, or organic disorders such as (auto)immune disorders. Studies have shown that ME/CFS and major depression are both clinical manifestations of shared IO&NS pathways, and that both disorders can be discriminated by specific symptoms and unshared or differentiating pathways. Interventions with CBT/GET are potentially harmful for many patients with ME/CFS, since the underlying pathophysiological abnormalities may be intensified by physical stressors.</p> <p>Conclusions</p> <p>In contrast to Harvey and Wessely's (bio)psychosocial model for ME/CFS a bio(psychosocial) model based upon IO&NS abnormalities is likely more appropriate to this complex disorder. In clinical practice, we suggest physicians should also explore the IO&NS pathophysiology by applying laboratory tests that examine the pathways involved.</p

    Sulfur analysis of Bolu-Mengen lignite before and after microbiological treatment using reductive pyrolysis and gas chromatography/mass spectrometry

    Get PDF
    Atmospheric pressure-temperature programmed reduction coupled with on-line mass spectrometry (AP-TPR/MS) is used for the first time on microbiologically treated coal samples as a technique to monitor the degree of desulfurization of the various sulfur functionalities. The experimental procedure enables the identification of both organic and inorganic sulfur species present in the coal matrix. A better insight in the degradation of the coal matrix and the accompanying processes during the AP-TPR experiment is obtained by a quantitative differentiation of the sulfur. The determination of the sulfur balance for the reductive pyrolysis gives an overview of the side reactions and their relative contribution in the total process. The volatile sulfur species are unambiguously identified using AP-TPR off-line coupled with gas chromatography/mass spectrometry (GC/MS). In this way, fundamental mechanisms and reactions that occur during the reductive pyrolysis could be quantified, explaining the differences in AP-TPR recoveries. Therefore, this study gives a clearer view on the possibilities and limitations of AP-TPR as a technique to monitor sulfur functionalities in coal
    corecore