24 research outputs found

    A Tribute to the Mind, Methodology and Mentoring of Wayne Velicer

    Get PDF
    Wayne Velicer is remembered for a mind where mathematical concepts and calculations intrigued him, behavioral science beckoned him, and people fascinated him. Born in Green Bay, Wisconsin on March 4, 1944, he was raised on a farm, although early influences extended far beyond that beginning. His Mathematics BS and Psychology minor at Wisconsin State University in Oshkosh, and his PhD in Quantitative Psychology from Purdue led him to a fruitful and far-reaching career. He was honored several times as a high-impact author, was a renowned scholar in quantitative and health psychology, and had more than 300 scholarly publications and 54,000+ citations of his work, advancing the arenas of quantitative methodology and behavioral health. In his methodological work, Velicer sought out ways to measure, synthesize, categorize, and assess people and constructs across behaviors and time, largely through principal components analysis, time series, and cluster analysis. Further, he and several colleagues developed a method called Testing Theory-based Quantitative Predictions, successfully applied to predicting outcomes and effect sizes in smoking cessation, diet behavior, and sun protection, with the potential for wider applications. With $60,000,000 in external funding, Velicer also helped engage a large cadre of students and other colleagues to study methodological models for a myriad of health behaviors in a widely applied Transtheoretical Model of Change. Unwittingly, he has engendered indelible memories and gratitude to all who crossed his path. Although Wayne Velicer left this world on October 15, 2017 after battling an aggressive cancer, he is still very present among us

    Beta defensin-2 is reduced in central but not in distal airways of smoker COPD patients

    Get PDF
    Background: Altered pulmonary defenses in chronic obstructive pulmonary disease (COPD) may promote distal airways bacterial colonization. The expression/activation of Toll Like receptors (TLR) and beta 2 defensin (HBD2) release by epithelial cells crucially affect pulmonary defence mechanisms. Methods: The epithelial expression of TLR4 and of HBD2 was assessed in surgical specimens from current smokers COPD (s-COPD; n = 17), ex-smokers COPD (ex-s-COPD; n = 8), smokers without COPD (S; n = 12), and from non-smoker non-COPD subjects (C; n = 13). Results: In distal airways, s-COPD highly expressed TLR4 and HBD2. In central airways, S and s-COPD showed increased TLR4 expression. Lower HBD2 expression was observed in central airways of s-COPD when compared to S and to ex-s-COPD. s-COPD had a reduced HBD2 gene expression as demonstrated by real-time PCR on micro-dissected bronchial epithelial cells. Furthermore, HBD2 expression positively correlated with FEV1/FVC ratio and inversely correlated with the cigarette smoke exposure. In a bronchial epithelial cell line (16 HBE) IL-1β significantly induced the HBD2 mRNA expression and cigarette smoke extracts significantly counteracted this IL-1 mediated effect reducing both the activation of NFkB pathway and the interaction between NFkB and HBD2 promoter. Conclusions: This study provides new insights on the possible mechanisms involved in the alteration of innate immunity mechanisms in COPD. © 2012 Pace et al

    How humans alter dissolved organic matter composition in freshwater: relevance for the Earth’s biogeochemistry

    No full text
    Dissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change
    corecore