74 research outputs found

    Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-κB, a link between inflammation and mineralization

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordIntroduction: Hydrogen sulfide (H2S) was revealed to inhibit aortic valve calcification and inflammation was implicated in the pathogenesis of calcific aortic valve disease (CAVD). Objectives: We investigate whether H2S inhibits mineralization via abolishing inflammation. Methods and results: Expression of pro-inflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) were increased in patients with CAVD and in calcified aortic valve of ApoE-/- mice. Administration of H22S releasing donor (4-methoxyphenyl piperidinylphosphinodithioc acid (AP72)) exhibited inhibition on both calcification and inflammation in aortic valve of apolipoprotein E knockout mice (ApoE-/-) mice is reflected by lowering IL-1β and TNF-α levels. Accordingly, AP72 prevented the accumulation of extracellular calcium deposition and decreased nuclear translocation of nuclear factor-κB (NF-κB) in human valvular interstitial cells (VIC). This was also accompanied by reduced cytokine response. Double-silencing of endogenous H2S producing enzymes, Cystathionine gamma-lyase (CSE) and Cystathionine beta-synthase (CBS) in VIC exerted enhanced mineralization and higher levels of IL-1β and TNF-α. Importantly, silencing NF-κB gene or its pharmacological inhibition prevented nuclear translocation of runt-related transcription factor 2 (Runx2) and subsequently the calcification of human VIC. Increased levels of NF-κB and Runx2 and their nuclear accumulation occurred in ApoE-/- mice with a high-fat diet. Administration of AP72 decreased the expression of NF-κB and prevented its nuclear translocation in VIC of ApoE-/- mice on a high-fat diet, and that was accompanied by a lowered pro-inflammatory cytokine level. Similarly, activation of Runx2 did not occur in VIC of ApoE-/- mice treated with H2S donor. Employing Stimulated Emission Depletion (STED) nanoscopy, a strong colocalization of NF-κB and Runx2 was detected during the progression of valvular calcification. Conclusions: Hydrogen sulfide inhibits inflammation and calcification of aortic valve. Our study suggests that the regulation of Runx2 by hydrogen sulfide (CSE/CBS) occurs via NF-κB establishing a link between inflammation and mineralization in vascular calcification.Hungarian Academy of SciencesHungarian GovernmentEuropean UnionEuropean Regional Development Fund (ERDF)Medical Research Council (MRC)Brian Ridge ScholarshipMinistry for Innovation and Technology, Hungar

    Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.Background and Purpose: Calcification of heart valves is a frequent pathological finding in chronic kidney disease and in elderly patients. Hydrogen sulfide (H2S) may exert anti-calcific actions. Here we investigated H2S as an inhibitor of valvular calcification and to identify its targets in the pathogenesis. Experimental Approach: Effects of H2S on osteoblastic transdifferentiation of valvular interstitial cells (VIC) isolated from samples of human aortic valves were studied using immunohistochemistry and western blots. We also assessed H2S on valvular calcification in apolipoprotein E-deficient (ApoE−/−) mice. Key Results: In human VIC, H2S from donor compounds (NaSH, Na2S, GYY4137, AP67, and AP72) inhibited mineralization/osteoblastic transdifferentiation, dose-dependently in response to phosphate. Accumulation of calcium in the extracellular matrix and expression of osteocalcin and alkaline phosphatase was also inhibited. RUNX2 was not translocated to the nucleus and phosphate uptake was decreased. Pyrophosphate generation was increased via up-regulating ENPP2 and ANK1. Lowering endogenous production of H2S by concomitant silencing of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS) favoured VIC calcification. analysis of human specimens revealed higher Expression of CSE in aorta stenosis valves with calcification (AS) was higher than in valves of aortic insufficiency (AI). In contrast, tissue H2S generation was lower in AS valves compared to AI valves. Valvular calcification in ApoE−/− mice on a high-fat diet was inhibited by H2S. Conclusions and Implications: The endogenous CSE-CBS/H2S system exerts anti-calcification effects in heart valves providing a novel therapeutic approach to prevent hardening of valves

    Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: Altered biogenesis and mitochondrial metabolism of H2S lead to H2S deficiency in calcific aortic valve disease.

    Get PDF
    This is the final version. Available from Elsevier via the DOI in this record. Data availability: No data was used for the research described in the article.Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine β-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1β and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1β and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.Eotvos Lorand Research NetworkHungarian GovernmentEuropean Union and the European Social FundEuropean Union and the European Social FundMinistry of Innovation and Technology of Hungary from the National Research, Development and Innovation FundMinistry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fun

    Collective Motion of Cells Mediates Segregation and Pattern Formation in Co-Cultures

    Get PDF
    Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion

    Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force

    Get PDF
    Disseminating disease is a predictive and prognostic indicator of poor outcome in children with neuroblastoma. Its accurate and sensitive assessment can facilitate optimal treatment decisions. The International Neuroblastoma Risk Group (INRG) Task Force has defined standardised methods for the determination of minimal disease (MD) by immunocytology (IC) and quantitative reverse transcriptase-polymerase chain reaction (QRT-PCR) using disialoganglioside GD2 and tyrosine hydroxylase mRNA respectively. The INRG standard operating procedures (SOPs) define methods for collecting, processing and evaluating bone marrow (BM), peripheral blood (PB) and peripheral blood stem cell harvest by IC and QRT-PCR. Sampling PB and BM is recommended at diagnosis, before and after myeloablative therapy and at the end of treatment. Peripheral blood stem cell products should be analysed at the time of harvest. Performing MD detection according to INRG SOPs will enable laboratories throughout the world to compare their results and thus facilitate quality-controlled multi-centre prospective trials to assess the clinical significance of MD and minimal residual disease in heterogeneous patient groups

    Primary mucinous tumors of the ovary: an interobserver reproducibility and detailed molecular study reveals significant overlap between diagnostic categories

    Get PDF
    Primary ovarian mucinous tumors represent a heterogeneous group of neoplasms, and their diagnosis may be challenging. We analyzed 124 primary ovarian mucinous tumors originally diagnosed as mucinous borderline tumors (MBTs) or mucinous carcinomas (MCs), with an emphasis on interobserver diagnostic agreement and the potential for diagnostic support by molecular profiling using a next-generation sequencing targeted panel of 727 DNA and 147 RNA genes. Fourteen experienced pathologists independently assigned a diagnosis from preset options, based on a review of a single digitized slide from each tumor. After excluding 1 outlier participant, there was a moderate agreement in diagnosing the 124 cases when divided into 3 categories (κ = 0.524, for mucinous cystadenoma vs MBT vs MC). A perfect agreement for the distinction between mucinous cystadenoma/MBT as a combined category and MC was found in only 36.3% of the cases. Differentiating between MBTs and MCs with expansile invasion was particularly problematic. After a reclassification of the tumors into near-consensus diagnostic categories on the basis of the initial participant results, a comparison of molecular findings between the MBT and MC groups did not show major and unequivocal differences between MBTs and MCs or between MCs with expansile vs infiltrative pattern of invasion. In contrast, HER2 overexpression or amplification was found only in 5.3% of MBTs and in 35.3% of all MCs and in 45% of MCs with expansile invasion. Overall, HER2 alterations, including mutations, were found in 42.2% of MCs. KRAS mutations were found in 65.5% and PIK3CA mutations in 6% of MCs. In summary, although the diagnostic criteria are well-described, diagnostic agreement among our large group of experienced gynecologic pathologists was only moderate. Diagnostic categories showed a molecular overlap. Nonetheless, molecular profiling may prove to be therapeutically beneficial in advanced-stage, recurrent, or metastatic MCs. MTG8 - Moleculaire pathologie van gynecologische tumorenMolecular tumour pathology - and tumour genetic
    corecore