2,681 research outputs found

    Achievable Outage Rate Regions for the MISO Interference Channel

    Full text link
    We consider the slow-fading two-user multiple-input single-output (MISO) interference channel. We want to understand which rate points can be achieved, allowing a non-zero outage probability. We do so by defining four different outage rate regions. The definitions differ on whether the rates are declared in outage jointly or individually and whether the transmitters have instantaneous or statistical channel state information (CSI). The focus is on the instantaneous CSI case with individual outage, where we propose a stochastic mapping from the rate point and the channel realization to the beamforming vectors. A major contribution is that we prove that the stochastic component of this mapping is independent of the actual channel realization.Comment: Accepted for publication in IEEE Wireless Communications Letter

    Efficient Computation of Pareto Optimal Beamforming Vectors for the MISO Interference Channel with Successive Interference Cancellation

    Full text link
    We study the two-user multiple-input single-output (MISO) Gaussian interference channel where the transmitters have perfect channel state information and employ single-stream beamforming. The receivers are capable of performing successive interference cancellation, so when the interfering signal is strong enough, it can be decoded, treating the desired signal as noise, and subtracted from the received signal, before the desired signal is decoded. We propose efficient methods to compute the Pareto-optimal rate points and corresponding beamforming vector pairs, by maximizing the rate of one link given the rate of the other link. We do so by splitting the original problem into four subproblems corresponding to the combinations of the receivers' decoding strategies - either decode the interference or treat it as additive noise. We utilize recently proposed parameterizations of the optimal beamforming vectors to equivalently reformulate each subproblem as a quasi-concave problem, which we solve very efficiently either analytically or via scalar numerical optimization. The computational complexity of the proposed methods is several orders-of-magnitude less than the complexity of the state-of-the-art methods. We use the proposed methods to illustrate the effect of the strength and spatial correlation of the channels on the shape of the rate region.Comment: Accepted for publication in IEEE Transactions on Signal Processin

    Improved Time-Domain Accuracy Standards for Model Gravitational Waveforms

    Get PDF
    Model gravitational waveforms must be accurate enough to be useful for detection of signals and measurement of their parameters, so appropriate accuracy standards are needed. Yet these standards should not be unnecessarily restrictive, making them impractical for the numerical and analytical modelers to meet. The work of Lindblom, Owen, and Brown [Phys. Rev. D 78, 124020 (2008)] is extended by deriving new waveform accuracy standards which are significantly less restrictive while still ensuring the quality needed for gravitational-wave data analysis. These new standards are formulated as bounds on certain norms of the time-domain waveform errors, which makes it possible to enforce them in situations where frequency-domain errors may be difficult or impossible to estimate reliably. These standards are less restrictive by about a factor of 20 than the previously published time-domain standards for detection, and up to a factor of 60 for measurement. These new standards should therefore be much easier to use effectively.Comment: 10 pages, 5 figure

    Effect of hyperon bulk viscosity on neutron-star r-modes

    Full text link
    Neutron stars are expected to contain a significant number of hyperons in addition to protons and neutrons in the highest density portions of their cores. Following the work of Jones, we calculate the coefficient of bulk viscosity due to nonleptonic weak interactions involving hyperons in neutron-star cores, including new relativistic and superfluid effects. We evaluate the influence of this new bulk viscosity on the gravitational radiation driven instability in the r-modes. We find that the instability is completely suppressed in stars with cores cooler than a few times 10^9 K, but that stars rotating more rapidly than 10-30% of maximum are unstable for temperatures around 10^10 K. Since neutron-star cores are expected to cool to a few times 10^9 K within seconds (much shorter than the r-mode instability growth time) due to direct Urca processes, we conclude that the gravitational radiation instability will be suppressed in young neutron stars before it can significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte

    R-Modes in Superfluid Neutron Stars

    Get PDF
    The analogs of r-modes in superfluid neutron stars are studied here. These modes, which are governed primarily by the Coriolis force, are identical to their ordinary-fluid counterparts at the lowest order in the small angular-velocity expansion used here. The equations that determine the next order terms are derived and solved numerically for fairly realistic superfluid neutron-star models. The damping of these modes by superfluid ``mutual friction'' (which vanishes at the lowest order in this expansion) is found to have a characteristic time-scale of about 10^4 s for the m=2 r-mode in a ``typical'' superfluid neutron-star model. This time-scale is far too long to allow mutual friction to suppress the recently discovered gravitational radiation driven instability in the r-modes. However, the strength of the mutual friction damping depends very sensitively on the details of the neutron-star core superfluid. A small fraction of the presently acceptable range of superfluid models have characteristic mutual friction damping times that are short enough (i.e. shorter than about 5 s) to suppress the gravitational radiation driven instability completely.Comment: 15 pages, 8 figure

    The r-modes in accreting neutron stars with magneto-viscous boundary layers

    Full text link
    We explore the dynamics of the r-modes in accreting neutron stars in two ways. First, we explore how dissipation in the magneto-viscous boundary layer (MVBL) at the crust-core interface governs the damping of r-mode perturbations in the fluid interior. Two models are considered: one assuming an ordinary-fluid interior, the other taking the core to consist of superfluid neutrons, type II superconducting protons, and normal electrons. We show, within our approximations, that no solution to the magnetohydrodynamic equations exists in the superfluid model when both the neutron and proton vortices are pinned. However, if just one species of vortex is pinned, we can find solutions. When the neutron vortices are pinned and the proton vortices are unpinned there is much more dissipation than in the ordinary-fluid model, unless the pinning is weak. When the proton vortices are pinned and the neutron vortices are unpinned the dissipation is comparable or slightly less than that for the ordinary-fluid model, even when the pinning is strong. We also find in the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8 K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to counteract the magnetic effects. Second, we evolve our two models in time, accounting for accretion, and explore how the magnetic field strength, the r-mode saturation amplitude, and the accretion rate affect the cyclic evolution of these stars. If the r-modes control the spin cycles of accreting neutron stars we find that magnetic fields can affect the clustering of the spin frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a referenc

    Shear viscosity of neutron matter from realistic nucleon-nucleon interactions

    Full text link
    The calculation of transport properties of Fermi liquids, based on the formalism developed by Abrikosov and Khalatnikov, requires the knowledge of the probability of collisions between quasiparticles in the vicinity of the Fermi surface. We have carried out a numerical study of the shear viscosity of pure neutron matter, whose value plays a pivotal role in determining the stability of rotating neutron stars, in which these processes are described using a state-of-the-art nucleon-nucleon potential model. Within our approach medium modifications of the scattering cross section are consistently taken into account, through an effective interaction obtained from the matrix elements of the bare interaction between correlated states. Inclusion of medium effects lead to a large increase of the viscosity at densities larger than 0.1\sim 0.1 fm^{-3}.Comment: 4 pages, 4 figures. Corrected typo

    Nonlinear r-Modes in Neutron Stars: Instability of an unstable mode

    Get PDF
    We study the dynamical evolution of a large amplitude r-mode by numerical simulations. R-modes in neutron stars are unstable growing modes, driven by gravitational radiation reaction. In these simulations, r-modes of amplitude unity or above are destroyed by a catastrophic decay: A large amplitude r-mode gradually leaks energy into other fluid modes, which in turn act nonlinearly with the r-mode, leading to the onset of the rapid decay. As a result the r-mode suddenly breaks down into a differentially rotating configuration. The catastrophic decay does not appear to be related to shock waves at the star's surface. The limit it imposes on the r-mode amplitude is significantly smaller than that suggested by previous fully nonlinear numerical simulations.Comment: Published in Phys. Rev. D Rapid Comm. 66, 041303(R) (2002

    Möglichkeiten und Probleme bei der Anwendung der Klebtechnik

    Get PDF
    Nur wenn eine klebgerecht ausgeführte Konstruktion mit dem richtigen Klebstoff nach optimaler Oberflächenbehandlung und mit angepssten Abbindebedingungen gefertigt wird, sind Klebverbindungen von maximaler Festigkeit und Alterungsbeständigkeit zu erzielen. Am Beispiel von Bremsbelägen wird gezeigt, dass bei einer entsprechenden Erprobung auch sogenannte Sicherheitsteile durch Kleben hergestellt werden könne

    Generalized r-Modes of the Maclaurin Spheroids

    Get PDF
    Analytical solutions are presented for a class of generalized r-modes of rigidly rotating uniform density stars---the Maclaurin spheroids---with arbitrary values of the angular velocity. Our analysis is based on the work of Bryan; however, we derive the solutions using slightly different coordinates that give purely real representations of the r-modes. The class of generalized r-modes is much larger than the previously studied `classical' r-modes. In particular, for each l and m we find l-m (or l-1 for the m=0 case) distinct r-modes. Many of these previously unstudied r-modes (about 30% of those examined) are subject to a secular instability driven by gravitational radiation. The eigenfunctions of the `classical' r-modes, the l=m+1 case here, are found to have particularly simple analytical representations. These r-modes provide an interesting mathematical example of solutions to a hyperbolic eigenvalue problem.Comment: 12 pages, 3 figures; minor changes and additions as will appear in the version to be published in Physical Review D, January 199
    corecore