87 research outputs found

    Modulation of ecdysal cyst and toxin dynamics of two Alexandrium (Dinophyceae) species under small-scale turbulence

    Get PDF
    Some dinoflagellate species have shown different physiological responses to certain turbulent conditions. Here we investigate how two levels of turbulent kinetic energy dissipation rates (epsilon = 0.4 and 27 cm(2) s(-3)) affect the PSP toxins and ecdysal cyst dynamics of two bloom forming species, Alexandrium minutum and A. catenella. The most striking responses were observed at the high epsilon generated by an orbital shaker. In the cultures of the two species shaken for more than 4 days, the cellular GTX(1+4) toxin contents were significantly lower than in the still control cultures. In A. minutum this trend was also observed in the C(1+2) toxin content. For the two species, inhibition of ecdysal cyst production occurred during the period of exposure of the cultures to stirring (4 or more days) at any time during their growth curve. Recovery of cyst abundances was always observed when turbulence stopped. When shaking persisted for more than 4 days, the net growth rate significantly decreased in A. minutum (from 0.25 +/- 0.01 day(-1) to 0.19 +/- 0.02 day(-1)) and the final cell numbers were lower (ca. 55.4%) than in the still control cultures. In A. catenella, the net growth rate was not markedly modified by turbulence although under long exposure to shaking, the cultures entered earlier in the stationary phase and the final cell numbers were significantly lower (ca. 23%) than in the control flasks. The described responses were not observed in the experiments performed at the low turbulence intensities with an orbital grid system, where the population development was favoured. In those conditions, cells appeared to escape from the zone of the influence of the grids and concentrated in calmer thin layers either at the top or at the bottom of the containers. This ecophysiological study provides new evidences about the sensitivity to high levels of small-scale turbulence by two life cycle related processes, toxin production and encystment, in dinoflagellates. This can contribute to the understanding of the dynamics of those organisms in nature

    In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome

    Full text link
    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greaterâ thanâ normal 1/T1 that is quenchable with antioxidant as measured by quenchâ assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proofâ ofâ concept data in models of ADâ like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. ADâ like models showed an abnormal gradient along the CA1 dorsalâ ventral axis of excessive free radical production as measured by Quest MRI, and redoxâ sensitive calcium dysregulation as measured by manganeseâ enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subâ field oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.â Berkowitz, B. A., Lenning J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafieâ Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017). www.fasebj.orgâ Berkowitz, Bruce A., Lenning, Jacob, Khetarpal, Nikita, Tran, Catherine, Wu, Johnny Y., Berri, Ali M., Dernay, Kristin, Haacke, E. Mark, Shafieâ Khorassani, Fatema, Podolsky, Robert H., Gant, John C., Maimaiti, Shaniya, Thibault, Olivier, Murphy, Geoffrey G., Bennett, Brian M., Roberts, Robin, In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154241/1/fsb2fj201700229r.pd

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    NOTE ON THE SUBJECTIVE SPEED OF MANUAL WORK

    No full text

    Vriendschap liefde en overgave

    No full text

    Met het oog op het lichaam

    No full text

    Nooit genoeg: De onstuitbare opmars van fast food en slow food

    No full text
    corecore