1,757 research outputs found

    Cellular adaptation to low oxygen availability by a switch in the protein synthesis machinery

    Get PDF
    Protein synthesis is a classic molecular mechanism of cell biology that is taught in introductory biology classrooms. It involves the translation of messenger ribonucleic acid (mRNA) information into proteins, the building blocks of life. The initial step of protein synthesis consists of the euÂŹkaryotic translation initiation factor 4E (eIF4E) binding to the 5’cap of mRNAs. A variety of stressÂŹes repress translation to conserve energy because protein synthesis requires over half of a cell’s energy supply. An important stress for multicellular animals is low oxygen availability (hypoxia). This causes a repression of cap-directed translation by inhibiting eIF4E. This raises a fundamental question in cell biology as to how proteins are synthesized in periods of oxygen scarcity and eIF4E inhibition. Here, we describe an oxygen-regulated translation initiation complex that mediates selective cap-dependent protein synthesis. Hypoxia stimulates the formation of a complex that inÂŹcludes the oxygen-regulated hypoxia-inducible factor 2α (HIF-2α), the RNA binding protein RBM4 and the cap-binding eIF4E2, an eIF4E homologue. We also identified an RNA hypoxia response eleÂŹment (rHRE) that recruits this complex to a wide array of mRNAs, including the epidermal growth factor receptor (EGFR), which plays a role in growth signaling and proliferation. Once assembled at the rHRE, HIF-2α/RBM4/eIF4E2 captures the 5’cap and targets mRNAs for active translation thereby evading hypoxia-induced repression of protein synthesis. These findings demonstrate that cells have evolved a program whereby oxygen availability switches the basic translation initiation machinery.

    Climate change and climate variability: personal motivation for adaptation and mitigation

    Get PDF
    BACKGROUND: Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. METHODS: In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. RESULTS: Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). CONCLUSIONS: Motivation for voluntary mitigation is mostly dependent on perceived susceptibility to threats and severity of climate change or climate variability impacts, whereas adaptation is largely dependent on the availability of information relevant to climate change. Thus, the climate change discourse could be framed from a health perspective to motivate behaviour change

    White matter tract disconnection in Gerstmann's syndrome: Insights from a single case study

    Get PDF
    It has been suggested that Gerstmann's syndrome is the result of subcortical disconnection rather than emerging from damage of a multifunctional brain region within the parietal lobe. However, patterns of white matter tract disconnection following parietal damage have been barely investigated. This single case study allows characterising Gerstmann's syndrome in terms of disconnected networks. We report the case of a left parietal patient affected by Gerstmann's tetrad: agraphia, acalculia, left/right orientation problems, and finger agnosia. Lesion mapping, atlas-based estimation of probability of disconnection, and DTI-based tractography revealed that the lesion was mainly located in the superior parietal lobule, and it caused disruption of both intraparietal tracts passing through the inferior parietal lobule (e.g., tracts connecting the angular, supramarginal, postcentral gyri, and the superior parietal lobule) and fronto-parietal long tracts (e.g., the superior longitudinal fasciculus). The lesion site appears to be located more superiorly as compared to the cerebral regions shown active by other studies during tasks impaired in the syndrome, and it reached the subcortical area potentially critical in the emergence of the syndrome, as hypothesised in previous studies. Importantly, the reconstruction of tracts connecting regions within the parietal lobe indicates that this critical subcortical area is mainly crossed by white matter tracts connecting the angular gyrus and the superior parietal lobule. Taken together, these findings suggest that this case study might be considered as empirical evidence of Gerstmann's tetrad caused by disconnection of intraparietal white matter tracts

    GLP-1 receptor signalling promotes ÎČ-cell glucose metabolism via mTOR-dependent HIF-1α activation

    Get PDF
    Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic ß-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in ß-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 ß-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of ß-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1a) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in ß-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated ß-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression

    Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha.

    Full text link
    Hypoxia is an essential developmental and physiological stimulus that plays a key role in the pathophysiology of cancer, heart attack, stroke, and other major causes of mortality. Hypoxia-inducible factor 1 (HIF-1) is the only known mammalian transcription factor expressed uniquely in response to physiologically relevant levels of hypoxia. We now report that in Hif1a-/- embryonic stem cells that did not express the O2-regulated HIF-1alpha subunit, levels of mRNAs encoding glucose transporters and glycolytic enzymes were reduced, and cellular proliferation was impaired. Vascular endothelial growth factor mRNA expression was also markedly decreased in hypoxic Hif1a-/- embryonic stem cells and cystic embryoid bodies. Complete deficiency of HIF-1alpha resulted in developmental arrest and lethality by E11 of Hif1a-/- embryos that manifested neural tube defects, cardiovascular malformations, and marked cell death within the cephalic mesenchyme. In Hif1a+/+ embryos, HIF-1alpha expression increased between E8.5 and E9.5, coincident with the onset of developmental defects and cell death in Hif1a-/- embryos. These results demonstrate that HIF-1alpha is a master regulator of cellular and developmental O2 homeostasis

    Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von hippel-lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities

    Get PDF
    E3 ubiquitin ligases are attractive targets in the ubiquitin-proteasome system, however, the development of small-molecule ligands has been rewarded with limited success. The von Hippel-Lindau protein (pVHL) is the substrate recognition subunit of the VHL E3 ligase that targets HIF-1α for degradation. We recently reported inhibitors of the pVHL:HIF-1α interaction, however they exhibited moderate potency. Herein, we report the design and optimization, guided by X-ray crystal structures, of a ligand series with nanomolar binding affinities

    The Role of LDH Serum Levels in Predicting Global Outcome in HCC Patients Undergoing TACE: Implications for Clinical Management

    Get PDF
    In many tumor types serum lactate dehydrogenase (LDH) levels is an indirect marker of tumor hypoxia, neo-angiogenesis and worse prognosis. However data about hepatocellular carcinoma (HCC) are lacking in the clinical setting of patients undergoing transarterial-chemoembolization (TACE) in whom hypoxia and neo-angiogenesis may represent a molecular key to treatment failure. Aim of our analysis was to evaluate the role of LDH pre-treatment levels in determining clinical outcome for patients with HCC receiving TACE. One hundred and fourteen patients were available for our analysis. For all patients LDH values were collected within one month before the procedure. We divided our patients into two groups, according to LDH serum concentration registered before TACE (first: LDH≀450 U/l 84 patients; second: LDH>450 U/l 30 patients). Patients were classified according to the variation in LDH serum levels pre- and post-treatment (increased: 62 patients vs. decreased 52 patients). No statistically significant differences were found between the groups for all clinical characteristics analyzed (gender, median age, performance status ECOG, staging systems). In patients with LDH values below 450 U/l median time to progression (TTP) was 16.3 months, whereas it was of 10.1 months in patients above the cut-off (p = 0.0085). Accordingly median overall survival (OS) was 22.4 months and 11.7 months (p = 0.0049). In patients with decreased LDH values after treatment median TTP was 12.4 months, and median OS was 22.1 months, whereas TTP was 9.1 months and OS was 9.5 in patients with increased LDH levels (TTP: p = 0.0087; OS: p<0.0001). In our experience, LDH seemed able to predict clinical outcome for HCC patients undergoing TACE. Given the correlation between LDH levels and tumor angiogenesis we can speculate that patients with high LDH pretreatment levels may be optimal candidates for clinical trial exploring a multimodality treatment approach with TACE and anti-VEGF inhibitors in order to improve TTP and OS

    Expression profiling of laser-microdissected intrapulmonary arteries in hypoxia-induced pulmonary hypertension

    Get PDF
    BACKGROUND: Chronic hypoxia influences gene expression in the lung resulting in pulmonary hypertension and vascular remodelling. For specific investigation of the vascular compartment, laser-microdissection of intrapulmonary arteries was combined with array profiling. METHODS AND RESULTS: Analysis was performed on mice subjected to 1, 7 and 21 days of hypoxia (FiO(2 )= 0.1) using nylon filters (1176 spots). Changes in the expression of 29, 38, and 42 genes were observed at day 1, 7, and 21, respectively. Genes were grouped into 5 different classes based on their time course of response. Gene regulation obtained by array analysis was confirmed by real-time PCR. Additionally, the expression of the growth mediators PDGF-B, TGF-ÎČ, TSP-1, SRF, FGF-2, TIE-2 receptor, and VEGF-R1 were determined by real-time PCR. At day 1, transcription modulators and ion-related proteins were predominantly regulated. However, at day 7 and 21 differential expression of matrix producing and degrading genes was observed, indicating ongoing structural alterations. Among the 21 genes upregulated at day 1, 15 genes were identified carrying potential hypoxia response elements (HREs) for hypoxia-induced transcription factors. Three differentially expressed genes (S100A4, CD36 and FKBP1a) were examined by immunohistochemistry confirming the regulation on protein level. While FKBP1a was restricted to the vessel adventitia, S100A4 and CD36 were localised in the vascular tunica media. CONCLUSION: Laser-microdissection and array profiling has revealed several new genes involved in lung vascular remodelling in response to hypoxia. Immunohistochemistry confirmed regulation of three proteins and specified their localisation in vascular smooth muscle cells and fibroblasts indicating involvement of different cells types in the remodelling process. The approach allows deeper insight into hypoxic regulatory pathways specifically in the vascular compartment of this complex organ
    • 

    corecore