17,956 research outputs found

    Entanglement genesis by ancilla-based parity measurement in 2D circuit QED

    Get PDF
    We present an indirect two-qubit parity meter in planar circuit quantum electrodynamics, realized by discrete interaction with an ancilla and a subsequent projective ancilla measurement with a dedicated, dispersively coupled resonator. Quantum process tomography and successful entanglement by measurement demonstrate that the meter is intrinsically quantum non-demolition. Separate interaction and measurement steps allow commencing subsequent data qubit operations in parallel with ancilla measurement, offering time savings over continuous schemes.Comment: 5 pages, 4 figures; supplemental material with 5 figure

    Reversing quantum trajectories with analog feedback

    Get PDF
    We demonstrate the active suppression of transmon qubit dephasing induced by dispersive measurement, using parametric amplification and analog feedback. By real-time processing of the homodyne record, the feedback controller reverts the stochastic quantum phase kick imparted by the measurement on the qubit. The feedback operation matches a model of quantum trajectories with measurement efficiency η~≈0.5\tilde{\eta} \approx 0.5, consistent with the result obtained by postselection. We overcome the bandwidth limitations of the amplification chain by numerically optimizing the signal processing in the feedback loop and provide a theoretical model explaining the optimization result.Comment: 5 pages, 4 figures, and Supplementary Information (7 figures

    Nanopositioning of a diamond nanocrystal containing a single NV defect center

    Full text link
    Precise control over the position of a single quantum object is important for many experiments in quantum science and nanotechnology. We report on a technique for high-accuracy positioning of individual diamond nanocrystals. The positioning is done with a home-built nanomanipulator under real-time scanning electron imaging, yielding an accuracy of a few nanometers. This technique is applied to pick up, move and position a single NV defect center contained in a diamond nanocrystal. We verify that the unique optical and spin properties of the NV center are conserved by the positioning process.Comment: 3 pages, 3 figures; high-resolution version available at http://www.ns.tudelft.nl/q

    A Flexible and Modular Framework for Implementing Infrastructures for Global Computing

    Get PDF
    We present a Java software framework for building infrastructures to support the development of applications for systems where mobility and network awareness are key issues. The framework is particularly useful to develop run-time support for languages oriented towards global computing. It enables platform designers to customize communication protocols and network architectures and guarantees transparency of name management and code mobility in distributed environments. The key features are illustrated by means of a couple of simple case studies

    Energy spectrum of the relativistic Dirac-Morse problem

    Get PDF
    We derive an elegant analytic formula for the energy spectrum of the relativistic Dirac-Morse problem, which has been solved recently. The new formula displays the properties of the spectrum more vividly.Comment: Replaced with a more potrable PDF versio

    In-Plane Magnetic Field Induced Anisotropy of 2D Fermi Contours and the Field Dependent Cyclotron Mass

    Full text link
    The electronic structure of a 2D gas subjected to a tilted magnetic field, with a strong component parallel to the GaAs/AlGaAs interface and a weak component oriented perpendicularly, is studied theoretically. It is shown that the parallel field component modifies the originally circular shape of a Fermi contour while the perpendicular component drive an electron by the Lorentz force along a Fermi line with a cyclotron frequency given by its shape. The corresponding cyclotron effective mass is calculated self-consistently for several concentrations of 2D carriers as a function of the in-plane magnetic field. The possibility to detect its field-induced deviations from the zero field value experimentally is discussed.Comment: written in LaTeX, 9 pages, 4 figures (6 pages) in 1 PS file (compressed and uuencoded) available on request from [email protected], SM-JU-93-

    Probing dynamics of an electron-spin ensemble via a superconducting resonator

    Get PDF
    We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit mode- and temperature-dependent coupling of hyperfine-split sub-ensembles to the resonator. Temperature-independent spin linewidth and relaxation time suggest that spin diffusion limits spin relaxation. Depolarization of one sub-ensemble by resonant pumping of another indicates fast cross-relaxation compared to spin diffusion, with implications on use of sub-ensembles as independent quantum memories.Comment: 5 pages, 5 figures, and Supplementary Information (2 figures
    • 

    corecore