1,638 research outputs found

    Ni-impurity effects on the superconducting gap of La2−x_{2-x}Srx_{x}CuO4_4 studied from the magnetic field and temperature dependence of the electronic specific heat

    Get PDF
    The magnetic field and temperature dependence of the electronic specific heat CelC_{\rm el} have been systematically investigated in La2−xSrxCu1−yNiyO4\rm La_{2-{\it x}}Sr_{\it x}Cu_{1-{\it y}}Ni_{\it y}O_4 (LSCNO) in order to study Ni-impurity effects on the superconducting (SC) gap. In LSCNO with xx=0.15 and yy=0.015, the value of Îł\gamma (≡Cel/T\equiv C_{\rm el}/T) at TT=0 K, Îł0\gamma_0, is enhanced under the magnetic field HH applied along the c\bm c-axis. The increment of Îł0\gamma_0, Δγ0\Delta \gamma_0, follows the Volovik relation Δγ0\Delta \gamma_0=AHA\sqrt{H}, characteristic of the SC gap with line nodes, with prefactor AA similar to that of a pure sample. The Cel/TC_{\rm el}/T vs. TT curve under HH=0 shows a d-wave-like SC anomaly with an abrupt increase at TcT_{\rm c} and TT-linear dependence at TTâ‰Ș\llTcT_{\rm c}, although the Îł0\gamma_0-value in the Cel/TC_{\rm el}/T vs. TT curve increases with increasing Ni concentrations. Interestingly, as the SC part of Cel/TC_{\rm el}/T, Cel/TC_{\rm el}/T−-Îł0\gamma_0≡\equivÎłs\gamma_{\rm s}, decreases in LSCNO, TcT_{\rm c} is reduced in proportion to the decrease of Îłs\gamma_{\rm s}. These findings can be explained phenomenologically by a simple model in which Ni impurities bring about strong pair breaking at the edges of the coherent nodal part of the Fermi surface but in the vicinity of the nodes of the SC gap. The reduction of the SC condensation energy U0U_0 in LSCNO, evaluated from CelC_{\rm el} at TT {0.3em}\raisebox{0.4ex}{<<} {-0.75em}\raisebox{-.7ex}{∌\sim} {0.3em}TcT_{\rm c}, is also understood by the same model.Comment: 7 pages, 6 figures, accepted in Phys. Rev.

    Accretion dynamics in the classical T Tauri star V2129 Oph

    Full text link
    We analyze the photometric and spectroscopic variability of the classical T Tauri star V2129 Oph over several rotational cycles to test the dynamical predictions of magnetospheric accretion models. The photometric variability and the radial velocity variations in the photospheric lines can be explained by rotational modulation due to cold spots, while the radial velocity variations of the He I (5876 \AA) line and the veiling variability are due to hot spot rotational modulation. The hot and cold spots are located at high latitudes and about the same phase, but the hot spot is expected to sit at the chromospheric level, while the cold spot is at the photospheric level. Using the dipole+octupole magnetic-field configuration previously proposed in the literature for the system, we compute 3D MHD magnetospheric simulations of the star-disk system. We use the simulation's density, velocity and scaled temperature structures as input to a radiative transfer code, from which we calculate theoretical line profiles at all rotational phases. The theoretical profiles tend to be narrower than the observed ones, but the qualitative behavior and the observed rotational modulation of the H\alpha and H\beta emission lines are well reproduced by the theoretical profiles. The spectroscopic and photometric variability observed in V2129 Oph support the general predictions of complex magnetospheric accretion models with non-axisymmetric, multipolar fields.Comment: Accepted by Astronomy and Astrophysic

    Chiral charge-density-waves

    Get PDF
    We discovered the chirality of charge density waves (CDW) in 1T-TiSe2_2 by using scanning tunnelling microscopy (STM) and optical ellipsometry. We found that the CDW intensity becomes Ia1:Ia2:Ia3=1:0.7±0.1:0.5±0.1I{a_1}:I{a_2}:I{a_3} = 1:0.7 \pm 0.1:0.5 \pm 0.1, where IaiIa_i (i =1, 2, 3) is the amplitude of the tunnelling current contributed by the CDWs. There were two states, in which the three intensity peaks of the CDW decrease \textit{clockwise} and \textit{anticlockwise} when we index each nesting vector in order of intensity in the Fourier transformation of the STM images. The chirality in CDW results in the three-fold symmetry breaking. Macroscopically, two-fold symmetry was indeed observed in optical measurement. We propose the new generalized CDW chirality H_{CDW} \equiv {\boldmath q_1} \cdot ({\boldmath q_2}\times {\boldmath q_3}), where {\boldmath q_i} are the nesting vectors, which is independent of the symmetry of components. The nonzero HCDWH_{CDW} - the triple-{\boldmath q} vectors do not exist in an identical plane in the reciprocal space - should induce a real-space chirality in CDW system.Comment: 12 pages, 4 figure

    MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

    Full text link
    We review recent axisymmetric and three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.Comment: 11 pages, 8 figures, conference proceedings: "Physics at the Magnetospheric Boundary", Geneva, Switzerland, 25-28 June, 201

    UV excess measures of accretion onto young very low-mass stars and brown dwarfs

    Get PDF
    Low-resolution spectra from 3000-9000 AA of young low-mass stars and brown dwarfs were obtained with LRIS on Keck I. The excess UV and optical emission arising in the Balmer and Paschen continua yields mass accretion rates ranging from 2e-12 to 1e-8 Mo/yr. These results are compared with {\it HST}/STIS spectra of roughly solar-mass accretors with accretion rates that range from 2e-10 to 5e-8 Mo/yr. The weak photospheric emission from M-dwarfs at <4000 A leads to a higher contrast between the accretion and photospheric emission relative to higher-mass counterparts. The mass accretion rates measured here are systematically 4-7 times larger than those from H-alpha emission line profiles, with a difference that is consistent with but unlikely to be explained by the uncertainty in both methods. The accretion luminosity correlates well with many line luminosities, including high Balmer and many He I lines. Correlations of the accretion rate with H-alpha 10% width and line fluxes show a large amount of scatter. Our results and previous accretion rate measurements suggest that accretion rate is proportional to M^(1.87+/-0.26) for accretors in the Taurus Molecular Cloud.Comment: 13 pages text, 15 tables, 14 figures. Accepted by Ap

    Coronal structure of the cTTS V2129 Oph

    Full text link
    The nature of the magnetic coupling between T Tauri stars and their disks determines not only the mass accretion process but possibly the spin evolution of the central star. We have taken a recently-published surface magnetogram of one moderately-accreting T Tauri star (V2129 Oph) and used it to extrapolate the geometry of its large-scale field. We determine the structure of the open (wind-bearing) field lines, the closed (X-ray bright) field lines and those potentially accreting field lines that pass through the equatorial plane inside the Keplerian co-rotation radius. We consider a series of models in which the stellar magnetic field is opened up by the outward pressure of the hot coronal gas at a range of radii. As this radius is increased, accretion takes place along simpler field structures and impacts on fewer sites at the stellar surface. This is consistent with the observed variation in the Ca II IRT and HeI lines which suggests that accretion in the visible hemisphere is confined to a single high-latitude spot. By determining the density and velocity of the accretion flows, we find that in order to have most of the total mass accretion rate impacting on a single high-latitude region we need disk material to accrete from approximately 7R*, close to the Keplerian co-rotation radius at 6.8R*. We also calculate the coronal density and X-ray emission measure. We find that both the magnitude and rotational modulation of the emission measure increase as the source surface is increased. For the field structure of V2129 Oph which is dominantly octupolar, the emission forms a bright, high-latitude ring that is always in view as the star rotates. Since the accretion funnels are not dense enough to cause significant scattering of coronal X-ray photons, they provide only a low rotational modulation of around 10% at most.Comment: 10 pages, 9 figure

    Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques

    Get PDF
    [Abridged] In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed 2-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin down torque on the star. We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, the mass loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss rate of ∌10−9M⊙\sim 10^{-9} M_\odot yr−1^{-1}. The winds are wide-angle, self-collimated flows, as expected of magnetic rotator winds with moderately fast rotation. The cases with quadrupolar field produce a much weaker torque than for a dipole with the same surface field strength, demonstrating that magnetic geometry plays a fundamental role in determining the torque. Cases with varying wind acceleration rate show much smaller variations in the torque suggesting that the details of the wind driving are less important. We use our computed results to fit a semi-analytic formula for the effective Alfv\'en radius in the wind, as well as the torque. This allows for considerable predictive power, and is an improvement over existing approximations.Comment: Accepted for publication in Ap

    Spectral line profiles changed by dust scattering in heavily obscured young stellar objects

    Full text link
    It is known that scattering of radiation by circumstellar dust can strongly change the line profiles in stellar spectra. This hampers the analysis of spectral lines originating in the emitting regions of heavily obscured young stars. To calculate the line profile of the scattered radiation, we suggest to use the approximation of remote scattering particles. This approximation assumes that the scattering dust grains are at a distance from the star that is much larger than the characteristic size of the emitting region. Using this method, we calculated the line profiles of several simple models. They show the H alpha line profiles of Herbig AeBe stars in the presence and absence of motionless or moving dust

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Pre-main sequence stars with disks in the Eagle Nebula observed in scattered light

    Get PDF
    NGC6611 and its parental cloud, the Eagle Nebula (M16), are well-studied star-forming regions, thanks to their large content of both OB stars and stars with disks and the observed ongoing star formation. We identified 834 disk-bearing stars associated with the cloud, after detecting their excesses in NIR bands from J band to 8.0 micron. In this paper, we study in detail the nature of a subsample of disk-bearing stars that show peculiar characteristics. They appear older than the other members in the V vs. V-I diagram, and/or they have one or more IRAC colors at pure photospheric values, despite showing NIR excesses, when optical and infrared colors are compared. We confirm the membership of these stars to M16 by a spectroscopic analysis. The physical properties of these stars with disks are studied by comparing their spectral energy distributions (SEDs) with the SEDs predicted by models of T-Tauri stars with disks and envelopes. We show that the age of these stars estimated from the V vs. V-I diagram is unreliable since their V-I colors are altered by the light scattered by the disk into the line of sight. Only in a few cases their SEDs are compatible with models with excesses in V band caused by optical veiling. Candidate members with disks and photospheric IRAC colors are selected by the used NIR disk diagnostic, which is sensitive to moderate excesses, such as those produced by disks with low masses. In 1/3 of these cases, scattering of stellar flux by the disks can also be invoked. The photospheric light scattered by the disk grains into the line of sight can affect the derivation of physical parameters of ClassII stars from photometric optical and NIR data. Besides, the disks diagnostic we defined are useful for selecting stars with disks, even those with moderate excesses or whose optical colors are altered by veiling or photospheric scattered light.Comment: Accepted for publication in A&
    • 

    corecore