20 research outputs found

    Ein implantierbares Telemetriesystem zur Impedanzspektroskopie

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Die kontinuierliche Überwachung des intrakorporalen Zustandes von Geweben beispielsweise zur Erkennung ischämischer Vorgänge nach gefäßchirurgischen Eingriffen oder im Rahmen der Rejektionsdiagnostik läßt sich durch bisher vorhandene Meßsysteme nur bedingt erreichen. Speziell die direkte Erfassung sensitiver Gewebeparameter über einen längeren Zeitraum ohne Belastung für den Patienten stellt in diesem Zusammenhang ein Problem dar. In der nachfolgenden Arbeit wird das Konzept eines implantierbaren Telemetriesystems vorgestellt, das die Bewertung des Gewebezustandes über die Messung der frequenzabhängigen Bioimpedanz ermöglicht. Besondere Beachtung wird der Auslegung und Umsetzung der einzelnen Systemkomponenten sowie der Vorstellung erster in vitro Messungen zur Evaluierung des Meßsystems geschenkt

    Search for charged Higgs bosons decaying to top and bottom quarks in ppbar collisions

    Get PDF
    We describe a search for production of a charged Higgs boson, q \bar{q'} -> H^+, reconstructed in the t\bar{b} final state in the mass range 180 <= M_{H^+} <= 300 GeV. The search was undertaken at the Fermilab Tevatron collider with a center-of-mass energy sqrt{s} = 1.96 TeV and uses 0.9 fb^{-1} of data collected with the D0 detector. We find no evidence for charged Higgs boson production and set upper limits on the production cross section in the Types I, II and III two-Higgs-doublet models (2HDMs). An excluded region in the (M_{H^+},tan\beta) plane for Type I 2HDM is presented.Comment: Submitted to Phys. Rev. Letter

    Monte Carlo characterization of high atomic number inorganic scintillators for in vivo dosimetry in Ir-192 brachytherapy

    No full text
    Background There is increased interest in in vivo dosimetry for 192Ir brachytherapy (BT) treatments using high atomic number (Z) inorganic scintillators. Their high light output enables construction of small detectors with negligible stem effect and simple readout electronics. Experimental determination of absorbed-dose energy dependence of detectors relative to water is prevalent, but it can be prone to high detector positioning uncertainties and does not allow for decoupling of absorbed-dose energy dependence from other factors affecting detector response . Purpose To investigate which measurement conditions and detector properties could affect their absorbed-dose energy dependence in BT in vivo dosimetry. Methods We used a general-purpose Monte Carlo (MC) code PENELOPE for the characterization of high-Z inorganic scintillators with the focus on ZnSe () Z. Two other promising media CsI () and Al2O3 () were included for comparison in selected scenarios. We determined absorbed-dose energy dependence of crystals relative to water under different scatter conditions (calibration phantom 12 × 12 × 30 cm3, characterization phantoms 20 × 20 × 20 cm3, 30 × 30 × 30 cm3, 40 × 40 × 40 cm3, and patient-like elliptic phantom 40 × 30 × 25 cm3). To mimic irradiation conditions during prostate treatments, we evaluated whether the presence of pelvic bones and calcifications affect ZnSe response. ZnSe detector design influence was also investigated. Results In contrast to low-Z organic and medium-Z inorganic scintillators, ZnSe and CsI media have substantially greater absorbed-dose energy dependence relative to water. The response was phantom-size dependent and changed by 11% between limited- and full-scatter conditions for ZnSe, but not for Al2O3. For a given phantom size, a part of the absorbed-dose energy dependence of ZnSe is caused not due to in-phantom scatter but due to source anisotropy. Thus, the absorbed-dose energy dependence of high-Z scintillators is a function of not only the radial distance but also the polar angle. Pelvic bones did not affect ZnSe response, whereas large and intermediate size calcifications reduced it by 9% and 5%, respectively, when placed midway between the source and the detector. Conclusions Unlike currently prevalent low- and medium-Z scintillators, high-Z crystals are sensitive to characterization and in vivo measurement conditions. However, good agreement between MC data for ZnSe in the present study and experimental data for ZnSe:O by Jørgensen et al. (2021) suggests that detector signal is proportional to the average absorbed dose to the detector cavity. This enables an easy correction for non-TG43-like scenarios (e.g., patient sizes and calcifications) through MC simulations. Such information should be provided to the clinic by the detector vendors.Funding Agencies|Danish Comprehensive Cancer Center; Swedish Cancer Society (Cancerfonden) [CAN 2017/1029, CAN 2018/622]; Novo Nordisk Fonden (NNF); Research Center for Radiotherapy, Danish Cancer Society [R191-A11526]</p

    In vivo dosimetry in brachytherapy:Requirements and future directions for research, development, and clinical practice

    No full text
    Brachytherapy can deliver high doses to the target while sparing healthy tissues due to its steep dose gradient leading to excellent clinical outcome. Treatment accuracy depends on several manual steps making brachytherapy susceptible to operational mistakes. Currently, treatment delivery verification is not routinely available and has led, in some cases, to systematic errors going unnoticed for years. The brachytherapy community promoted developments in in vivo dosimetry (IVD) through research groups and small companies. Although very few of the systems have been used clinically, it was demonstrated that the likelihood of detecting deviations from the treatment plan increases significantly with time-resolved methods. Time-resolved methods could interrupt a treatment avoiding gross errors which is not possible with time-integrated dosimetry. In addition, lower experimental uncertainties can be achieved by using source-tracking instead of direct dose measurements. However, the detector position in relation to the patient anatomy remains a main source of uncertainty. The next steps towards clinical implementation will require clinical trials and systematic reporting of errors and near-misses. It is of utmost importance for each IVD system that its sensitivity to different types of errors is well understood, so that end-users can select the most suitable method for their needs. This report aims to formulate requirements for the stakeholders (clinics, vendors, and researchers) to facilitate increased clinical use of IVD in brachytherapy. The report focuses on high dose-rate IVD in brachytherapy providing an overview and outlining the need for further development and research
    corecore