178 research outputs found

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Comment on "Liquid-Liquid Phase Transition in Supercooled Yttria-Alumina"

    Get PDF
    A Comment on the Letter by Adrian C. Barnes et al., Phys. Rev. Lett. 103 225702 (2009). The authors of the Letter offer a Reply

    Computer modelling of a penetrator thermal sensor

    Get PDF
    The Philae lander is part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko. It will use a harpoon like device to anchor itself onto the surface. The anchor will perhaps reach depths of 1–2 m. In the anchor is a temperature sensor that will measure the boundary temperature as part of the MUPUS experiment. As the anchor attains thermal equilibrium with the comet ice it may be possible to extract the thermal properties of the surrounding ice, such as the thermal diffusivity, by using the temperature sensor data. The anchor is not an optimal shape for a thermal probe and application of analytical solutions to the heat equation is inappropriate. We prepare a numerical model to fit temperature sensor data and extract the thermal diffusivity. Penetrator probes mechanically compact the material immediately surrounding them as they enter the target. If the thermal properties, composition and dimensions of the penetrator are known, then the thermal properties of this pristine material may be recovered although this will be a challenging measurement. We report on investigations, using a numerical thermal model, to simulate a variety of scenarios that the anchor may encounter and how they will affect the measurement

    An ultraviolet simulator for the incident Martian surface radiation and its applications

    Get PDF
    Ultraviolet (UV) radiation can act on putative organic/biological matter at the Martian surface in several ways. Only absorbed, but not transmitted or reflected, radiation energy can be photo-chemically effective. The most important biological UV effects are due to photochemical reactions in nucleic acids, DNA or RNA, which constitute the genetic material of all cellular organisms and viruses. Protein or lipid effects generally play a minor role, but they are also relevant in some cases. UV radiation can induce wavelengths-specific types of DNA damage. At the same time it can also induce the photo-reversion reaction of a UV induced DNA photoproduct of nucleic acid bases, the pyrimidine dimers. Intense UVB and UVC radiation, experienced on early Earth and present-day Mars, has been revealed to be harmful to all organisms, including extremophile bacteria and spores. Moreover, the formation of oxidants, catalytically produced in the Martian environment through UV irradiation, may be responsible for the destruction of organic matter on Mars. Following this, more laboratory simulations are vital in order to investigate and understand UV effects on organic matter in the case of Mars. We have designed a radiation apparatus that simulates the anticipated Martian UV surface spectrum between 200 and 400 nm (UVC-UVA). The system comprises a UV enhanced xenon arc lamp, special filter-sets and mirrors to simulate the effects of the Martian atmospheric column and dust loading. We describe the technical setup and performance of the system and discuss its uses for different applications. The design is focused on portability, therefore, the Mars-UV simulator represents a device for several different Mars simulation facilities with specific emphasis on Mars research topics

    Vortex generation in protoplanetary disks with an embedded giant planet

    Full text link
    Vortices in protoplanetary disks can capture solid particles and form planetary cores within shorter timescales than those involved in the standard core-accretion model. We investigate vortex generation in thin unmagnetized protoplanetary disks with an embedded giant planet with planet to star mass ratio 10−410^{-4} and 10−310^{-3}. Two-dimensional hydrodynamical simulations of a protoplanetary disk with a planet are performed using two different numerical methods. The results of the non-linear simulations are compared with a time-resolved modal analysis of the azimuthally averaged surface density profiles using linear perturbation theory. Finite-difference methods implemented in polar coordinates generate vortices moving along the gap created by Neptune-mass to Jupiter-mass planets. The modal analysis shows that unstable modes are generated with growth rate of order 0.3ΩK0.3 \Omega_K for azimuthal numbers m=4,5,6, where ΩK\Omega_K is the local Keplerian frequency. Shock-capturing Cartesian-grid codes do not generate very much vorticity around a giant planet in a standard protoplanetary disk. Modal calculations confirm that the obtained radial profiles of density are less susceptible to the growth of linear modes on timescales of several hundreds of orbital periods. Navier-Stokes viscosity of the order ν=10−5\nu=10^{-5} (in units of a2Ωpa^2 \Omega_p) is found to have a stabilizing effect and prevents the formation of vortices. This result holds at high resolution runs and using different types of boundary conditions. Giant protoplanets of Neptune-mass to Jupiter-mass can excite the Rossby wave instability and generate vortices in thin disks. The presence of vortices in protoplanetary disks has implications for planet formation, orbital migration, and angular momentum transport in disks.Comment: 14 pages, 15 figures, accepted for publication in A&

    Ab-initio study of several static and dynamic properties of liquid palladium and platinum

    Full text link
    We report a study on several static and dynamic properties of liquid Pd and Pt metals at thermodynamic conditions near their respective triple points. The calculations have been carried out by an ab initio molecular dynamics simulation technique. Results are reported for several static structural magnitudes which are compared with the available X-ray diffraction. As for the dynamic properties, results have been obtained for both single and collective dynamical magnitudes as well as for some transport coeffcients which are compared with the corresponding experimental data

    Dynamic properties of liquid Ni revisited

    Full text link
    Liquid Ni has previously been studied by different approaches such as molecular dynamics simulations and experimental techniques including inelastic neutron and X-ray scattering. Although some puzzling results, such as the shape of the sound dispersion curve for q ≤ 1.0 Å−1, have already been sorted out, there still persist some discrepancies, among different studies, for greater q-values. We have performed ab initio simulation calculations which show how those differences can be reconciled. Moreover, we have found that the transverse current spectral functions have some features which, so far, had previously been shown by high pressure liquid metals

    Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminium oxide melts

    Get PDF
    We combine small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) with aerodynamic levitation techniques to study in situ phase transitions in the liquid state under contactless conditions. At very high temperatures, yttria-alumina melts show a first-order transition, previously inferred from phase separation in quenched glasses. We show how the transition coincides with a narrow and reversible maximum in SAXS indicative of liquid unmixing on the nanoscale, combined with an abrupt realignment in WAXS features related to reversible shifts in polyhedral packing on the atomic scale. We also observed a rotary action in the suspended supercooled drop driven by repetitive transitions (a polyamorphic rotor) from which the reversible changes in molar volume (1.2 ± 0.2 cubic centimeters) and entropy (19 ± 4 joules mole–1 kelvin–1) can be estimated
    • …
    corecore