398 research outputs found

    The Galactic Distribution of Phosphorus: A Survey of 163 Disk and Halo Stars

    Full text link
    Phosphorus (P) is a critical element for life on Earth yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of -1.09 << [Fe/H] << 0.47 using observations from the Habitable-zone Planet Finder (HPF) instrument on the Hobby-Eberly Telescope (HET). Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 angstroms. Our [P/Fe] ratios show that chemical evolution models generally under-predict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∌\sim 0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared with α\alpha-elements, iron-peak, odd-Z, and s-process elements and we found that P in the disk most strongly resembles the evolution of the α\alpha-elements. We also find molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ±\pm 0.1 ratio in one low-α\alpha halo star and probable Gaia-Sausage-Enceladus (GSE) member, an abundance ratio ∌\sim 0.3 - 0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core collapse supernovae (CCSNe) based on the largest P abundance survey to-date.Comment: 19 pages, 10 figures, accepted for publication in The Astronomical Journa

    Host Star Properties And Transit Exclusion For The HD 38529 Planetary System

    Get PDF
    The transit signature of exoplanets provides an avenue through which characterization of exoplanetary properties may be undertaken, such as studies of mean density, structure, and atmospheric composition. The Transit Ephemeris Refinement and Monitoring Survey is a program to expand the catalog of transiting planets around bright host stars by refining the orbits of known planets discovered with the radial velocity technique. Here we present results for the HD 38529 system. We determine fundamental properties of the host star through direct interferometric measurements of the radius and through spectroscopic analysis. We provide new radial velocity measurements that are used to improve the Keplerian solution for the two known planets, and we find no evidence for a previously postulated third planet. We also present 12 years of precision robotic photometry of HD 38529 that demonstrate the inner planet does not transit and the host star exhibits cyclic variations in seasonal mean brightness with a timescale of approximately six years

    The band structure of BeTe - a combined experimental and theoretical study

    Full text link
    Using angle-resolved synchrotron-radiation photoemission spectroscopy we have determined the dispersion of the valence bands of BeTe(100) along ΓX\Gamma X, i.e. the [100] direction. The measurements are analyzed with the aid of a first-principles calculation of the BeTe bulk band structure as well as of the photoemission peaks as given by the momentum conserving bulk transitions. Taking the calculated unoccupied bands as final states of the photoemission process, we obtain an excellent agreement between experimental and calculated spectra and a clear interpretation of almost all measured bands. In contrast, the free electron approximation for the final states fails to describe the BeTe bulk band structure along ΓX\Gamma X properly.Comment: 21 pages plus 4 figure

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    The soil electric potential signature of summer drought

    Full text link
    During the period from late April to early August, a timeseries of soil electric potential measurements in the upper 15 cm of mineral soil were collected daily at the University of Michigan Botanical Gardens using an automatic data collection system. These data, after conversion to a surrogate measure of electrolyte concentration, provide a unique record of the 1988 summer drought in a continental location. The effects of rainfall-dewfall electrolyte dilution, evaporation-induced electrolyte concentration and upward-downward soil water advection are well-illustrated in the data. These observations demonstrate that soil electric potential is an easily measured variable of high information content, especially when collected with other system-linked environmental data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41671/1/704_2004_Article_BF00866203.pd

    Transits of Known Planets Orbiting a Naked-Eye Star

    Get PDF
    © 2020 The American Astronomical Society. All rights reserved.Some of the most scientifically valuable transiting planets are those that were already known from radial velocity (RV) surveys. This is primarily because their orbits are well characterized and they preferentially orbit bright stars that are the targets of RV surveys. The Transiting Exoplanet Survey Satellite (TESS) provides an opportunity to survey most of the known exoplanet systems in a systematic fashion to detect possible transits of their planets. HD 136352 (Nu2 Lupi) is a naked-eye (V = 5.78) G-type main-sequence star that was discovered to host three planets with orbital periods of 11.6, 27.6, and 108.1 days via RV monitoring with the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph. We present the detection and characterization of transits for the two inner planets of the HD 136352 system, revealing radii of 1.482-0.056+0.058 R ⊕ and 2.608-0.077+0.078 R ⊕ for planets b and c, respectively. We combine new HARPS observations with RV data from the Keck/High Resolution Echelle Spectrometer and the Anglo-Australian Telescope, along with TESS photometry from Sector 12, to perform a complete analysis of the system parameters. The combined data analysis results in extracted bulk density values of ρb = 7.8-1.1+1.2 g cm-3 and ρc = 3.50-0.36+0.41 g cm-3 for planets b and c, respectively, thus placing them on either side of the radius valley. The combination of the multitransiting planet system, the bright host star, and the diversity of planetary interiors and atmospheres means this will likely become a cornerstone system for atmospheric and orbital characterization of small worlds.Peer reviewe

    Uniform Atmospheric Retrieval Analysis of Ultracool Dwarfs II : Properties of 11 T-dwarfs

    Get PDF
    Accepted ApJ. Supplemental material including full posteriors will be included through the link in the published ApJ article © 2017 The American Astronomical Society. All rights reserved.Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late T-dwarf (600-800K) near infrared spectra. With these spectra we are able to place direct constraints the molecular abundances of H2_2O, CH4_4, CO, CO2_2, NH3_3, H2_2S, and Na+K, gravity, thermal structure (and effective temperature), photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and well constrained in all 11 objects. From the abundance constraints we find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong (>>25σ\sigma) increasing trend in the alkali metal abundances with effective temperature, indicative of alkali rainout. We also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample, that metallicities are typically sub solar and carbon-to-oxygen ratios are somewhat super solar, different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that our radii are larger than expectations from evolutionary models, possibly indicative of un-resolved binaries. This investigation and methodology represents a paradigm in linking spectra to the determination of the fundamental chemical and physical processes governing cool brown dwarf atmospheres.Peer reviewe

    First bromine doped cryogenic implosion at the National Ignition Facility

    Full text link
    We report on the first experiment dedicated to the study of nuclear reactions on dopants in a cryogenic capsule at the National Ignition Facility (NIF). This was accomplished using bromine doping in the inner layers of the CH ablator of a capsule identical to that used in the NIF shot N140520. The capsule was doped with 3×\times1016^{16} bromine atoms. The doped capsule shot, N170730, resulted in a DT yield that was 2.6 times lower than the undoped equivalent. The Radiochemical Analysis of Gaseous Samples (RAGS) system was used to collect and detect 79^{79}Kr atoms resulting from energetic deuteron and proton ion reactions on 79^{79}Br. RAGS was also used to detect 13^{13}N produced dominantly by knock-on deuteron reactions on the 12^{12}C in the ablator. High-energy reaction-in-flight neutrons were detected via the 209^{209}Bi(n,4n)206^{206}Bi reaction, using bismuth activation foils located 50 cm outside of the target capsule. The robustness of the RAGS signals suggest that the use of nuclear reactions on dopants as diagnostics is quite feasible
    • 

    corecore