11,344 research outputs found

    Research on experiential psychotherapies

    Get PDF
    Reviews research on experiential or humanistic psychotherapies, including meta-analysis of outcome research and studies of particular change processes. Outcome meta-analysis shows large client pre-post change, as well as large controlled effects relative to untreated controls and statistical equivalence to nonexperiential psychotherapies, including CBT

    Variational Principle in the Algebra of Asymptotic Fields

    Full text link
    This paper proposes a variational principle for the solutions of quantum field theories in which the ``trial functions'' are chosen from the algebra of asymptotic fields, and illustrates this variational principle in simple cases.Comment: 15 pages, Latex, no figure

    The chameleon groups of Richard J. Thompson: automorphisms and dynamics

    Get PDF
    The automorphism groups of several of Thompson's countable groups of piecewise linear homeomorphisms of the line and circle are computed and it is shown that the outer automorphism groups of these groups are relatively small. These results can be interpreted as stability results for certain structures of PL functions on the circle. Machinery is developed to relate the structures on the circle to corresponding structures on the line

    Entanglement and statistics in Hong-Ou-Mandel interferometry

    Get PDF
    Hong-Ou-Mandel interferometry allows one to detect the presence of entanglement in two-photon input states. The same result holds for two-particles input states which obey to Fermionic statistics. In the latter case however anti-bouncing introduces qualitative differences in the interferometer response. This effect is analyzed in a Gedankenexperiment where the particles entering the interferometer are assumed to belong to a one-parameter family of quons which continuously interpolate between the Bosonic and Fermionic statistics.Comment: 7 pages, 3 figures; minor editorial changes and new references adde

    Search for exchange-antisymmetric two-photon states

    Get PDF
    Atomic two-photon J=0 \leftrightarrowJ'=1 transitions are forbidden for photons of the same energy. This selection rule is related to the fact that photons obey Bose-Einstein statistics. We have searched for small violations of this selection rule by studying transitions in atomic Ba. We set a limit on the probability vv that photons are in exchange-antisymmetric states: v<1.2107v<1.2\cdot10^{-7}.Comment: 5 pages, 4 figures, ReVTeX and .eps. Submitted to Phys. Rev. Lett. Revised version 9/25/9

    Searching for Saturn's Dust Swarm: Limits on the size distribution of Irregular Satellites from km to micron sizes

    Full text link
    We describe a search for dust created in collisions between the Saturnian irregular satellites using archival \emph{Spitzer} MIPS observations. Although we detected a degree scale Saturn-centric excess that might be attributed to an irregular satellite dust cloud, we attribute it to the far-field wings of the PSF due to nearby Saturn. The Spitzer PSF is poorly characterised at such radial distances, and we expect PSF characterisation to be the main issue for future observations that aim to detect such dust. The observations place an upper limit on the level of dust in the outer reaches of the Saturnian system, and constrain how the size distribution extrapolates from the smallest known (few km) size irregulars down to micron-size dust. Because the size distribution is indicative of the strength properties of irregulars, we show how our derived upper limit implies irregular satellite strengths more akin to comets than asteroids. This conclusion is consistent with their presumed capture from the outer regions of the Solar System.Comment: accepted to MNRA

    Training deep neural density estimators to identify mechanistic models of neural dynamics

    Get PDF
    Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-- trained using model simulations-- to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features, and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics

    Theoretical analysis of perching and hovering maneuvers

    Get PDF
    Unsteady aerodynamic phenomena are encountered in a large number of modern aerospace and non-aerospace applications. Leading edge vortices (LEVs) are of particular interest because of their large impact on the forces and performance. In rotorcraft applications, they cause large vibrations and torsional loads (dynamic stall), affecting the performance adversely. In insect flight however, they contribute positively by enabling high-lift flight. Identifying the conditions that result in LEV formation and modeling their effects on the flow is an important ongoing challenge. Perching (airfoil decelerates to rest) and hovering (zero freestream velocity) maneuvers are of special interest. In earlier work by the authors, a Leading Edge Suction Parameter (LESP) was developed to predict LEV formation for airfoils undergoing arbitrary variation in pitch and plunge at a constant freestream velocity. In this research, the LESP criterion is extended to situations where the freestream velocity is varying or zero. A point-vortex model based on this criterion is developed and results from the model are compared against those from a computational fluid dynamics (CFD) method. Abstractions of perching and hovering maneuvers are used to validate the low-order model's performance in highly unsteady vortex-dominated flows, where the time-varying freestream/translational velocity is small in magnitude compared to the other contributions to the velocity experienced by the leading edge region of the airfoil. Time instants of LEV formation, flow topologies and force coefficient histories for the various motion kinematics from the low-order model and CFD are obtained and compared. The LESP criterion is seen to be successful in predicting the start of LEV formation and the point-vortex method is effective in modeling the flow development and forces on the airfoil. Typical run-times for the low-order method are between 30-40 seconds, making it a potentially convenient tool for control/design applications
    corecore