111 research outputs found

    Derivation and assessment of strong coupling core-particle model from the Kerman-Klein-D\"onau-Frauendorf theory

    Get PDF
    We review briefly the fundamental equations of a semi-microscopic core-particle coupling method that makes no reference to an intrinsic system of coordinates. We then demonstrate how an intrinsic system can be introduced in the strong coupling limit so as to yield a completely equivalent formulation. It is emphasized that the conventional core-particle coupling calculation introduces a further approximation that avoids what has hitherto been the most time-consuming feature of the full theory, and that this approximation can be introduced either in the intrinsic system, the usual case, or in the laboratory system, our preference. A new algorithm is described for the full theory that largely removes the difference in complexity between the two types of calculation. Comparison of the full and approximate theories for some representative cases provides a basis for the assessment of the accuracy of the traditional approach. We find that for well-deformed nuclei, e.g. 157Gd and 157Tb, the core-coupling method and the full theory give similar results.Comment: revtex, 3 figures(postscript), submitted to Phys.Rev.

    Application of the Kerman-Klein method to the solution of a spherical shell model for a deformed rare-earth nucleus

    Get PDF
    Core-particle coupling models are made viable by assuming that core properties such as matrix elements of multipole and pairing operators and excitation spectra are known independently. From the completeness relation, it is seen, however, that these quantities are themselves algebraic functions of the calculated core-particle amplitudes. For the deformed rare-earth nucleus 158Gd, we find that these sum rules are well-satisfied for the ground state band, implying that we have found a self-consistent solution of the non-linear Kerman-Klein equations.Comment: revtex and postscript, including 1 figure(postscript), submitted to Phys.Rev.Let

    Possible solution of the Coriolis attenuation problem

    Get PDF
    The most consistently useful simple model for the study of odd deformed nuclei, the particle-rotor model (strong coupling limit of the core-particle coupling model) has nevertheless been beset by a long-standing problem: It is necessary in many cases to introduce an ad hoc parameter that reduces the size of the Coriolis interaction coupling the collective and single-particle motions. Of the numerous suggestions put forward for the origin of this supplementary interaction, none of those actually tested by calculations has been accepted as the solution of the problem. In this paper we seek a solution of the difficulty within the framework of a general formalism that starts from the spherical shell model and is capable of treating an arbitrary linear combination of multipole and pairing forces. With the restriction of the interaction to the familiar sum of a quadrupole multipole force and a monopole pairing force, we have previously studied a semi-microscopic version of the formalism whose framework is nevertheless more comprehensive than any previously applied to the problem. We obtained solutions for low-lying bands of several strongly deformed odd rare earth nuclei and found good agreement with experiment, except for an exaggerated staggering of levels for K=1/2 bands, which can be understood as a manifestation of the Coriolis attenuation problem. We argue that within the formalism utilized, the only way to improve the physics is to add interactions to the model Hamiltonian. We verify that by adding a magnetic dipole interaction of essentially fixed strength, we can fit the K=1/2 bands without destroying the agreement with other bands. In addition we show that our solution also fits 163Er, a classic test case of Coriolis attenuation that we had not previously studied.Comment: revtex, including 7 figures(postscript), submitted to Phys.Rev.

    Neurology

    Get PDF
    Contains reports on eight research projects.U.S. Navy (Office of Naval Research (Nonr-1841(70))U. S. Public Health Service (MH-06175-02)U. S. Air Force (AF49(638)-1313)U. S. Public Health Service (B-3055-4)U. S. Public Health Service (B-3090-4

    Geographic variation in breeding system and environment predicts melanin-based plumage ornamentation of male and female Kentish plovers

    Get PDF
    Sexual selection determines the elaboration of morphological and behavioural traits and thus drives the evolution of phenotypes. Sexual selection on males and females can differ between populations, especially when populations exhibit different breeding systems. A substantial body of literature describes how breeding systems shape ornamentation across species, with a strong emphasis on male ornamentation and female preference. However, whether breeding system predicts ornamentation within species and whether similar mechanisms as in males also shape the phenotype of females remains unclear. Here, we investigate how different breeding systems are associated with male and female ornamentation in five geographically distinct populations of Kentish plovers Charadrius alexandrinus. We predicted that polygamous populations would exhibit more elaborate ornaments and stronger sexual dimorphism than monogamous populations. By estimating the size and intensity of male (n = 162) and female (n = 174) melanin-based plumage ornaments, i.e. breast bands and ear coverts, we show that plumage ornamentation is predicted by breeding system in both sexes. A difference in especially male ornamentation between polygamous (darker and smaller ornaments) and monogamous (lighter and larger) populations causes the greatest sexual dimorphism to be associated with polygamy. The non-social environment, however, may also influence the degree of ornamentation, for instance through availability of food. We found that, in addition to breeding system, a key environmental parameter, rainfall, predicted a seasonal change of ornamentation in a sex-specific manner. Our results emphasise that to understand the phenotype of animals, it is important to consider both natural and sexual selection acting on both males and females

    Digit ratios have poor indicator value in a wild bird population

    Get PDF
    Early androgen exposure is known to have long-lasting effects on phenotype, behaviour and even fitness, but difficulties in measuring the exposure hinders the study of its importance in evolutionary context. Digit ratios have been highlighted as a potential easy-to-measure indicator of early steroid exposure, as they have been suggested to reflect steroid, mainly testosterone levels during prenatal development. However, evidence for digit ratios reflecting early steroid levels is weak, as experimental studies, especially in wild populations, are scarce. We studied the association between maternally derived yolk androgens and digit ratios (2D:4D, 2D:3D and 3D:4D) using both correlative data and a rather high level of experimental elevation of yolk androgens in a passerine bird, the pied flycatcher (Ficedula hypoleuca). We also examined whether digit ratios have indicator value in an evolutionary context by studying correlations between digit ratios and reproductive traits, secondary sexual traits and exploratory behaviour. We did not find any association between digit ratios and yolk androgen level either in correlative or experimental data. Digit ratios were neither related to any of the reproductive and secondary sexual traits or exploratory behaviour measured. There was, however, a sex difference in 2D:3D and 3D:4D of adult birds (due to second and fourth digits being shorter in females), which was not apparent in fledglings or captivity-raised juveniles. This suggests that either the sex difference may develop as late as during the sexual maturation for breeding. These results indicate that, in this species, digit ratios are not reliable markers of maternally derived yolk androgen exposure and that they bear little relevance as correlates of the adaptive traits we measured

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems
    corecore