14 research outputs found

    Bioresorption control and biological response of magnesium alloy az31 coated with poly-β-hydroxybutyrate

    Get PDF
    Magnesium and its alloys are not normally used as bioresorbable temporary implants due to their high and uncontrolled degradation rate in a physiological liquid environment. The improvement of corrosion resistance to simulated body fluids (SBF) of a magnesium alloy (AZ31) coated with poly-β-hydroxybutyrate (PHB) was investigated. Scanning electron microscopy, Fourier transform infrared spectrometer, and contact angle measurements were used to characterize surface morphology, material composition, and wettability, respectively. pH modification of the SBF corroding medium, mass of Mg2+ ions released, weight loss of the samples exposed to the SBF solution, and electrochemical experiments were used to describe the corrosion process and its kinetics. The material’s biocompatibility was described by evaluating the effect of corrosion by products collected in the SBF equilibrating solution on hemolysis ratio, cytotoxicity, nitric oxide (NO), and total antioxidant capacity (T-AOC). The results showed that the PHB coating can diffusively control the degradation rate of magnesium alloy, improving its biocompatibility: the hemolysis rate of materials was lower than 5%, while in vitro human umbilical vein endothelial cell (HUVEC) compatibility experiments showed that PHB-coated Mg alloy promoted cell proliferation and had no effect on the NO content and that the T-AOC was enhanced compared with the normal group and bare AZ31 alloy. PHB-coated AZ31 magnesium alloy extraction fluids have a less toxic behavior due to the lower concentration of corrosion byproducts deriving from the diffusion control exerted by the PHB coating films both from the metal surface to the solution and vice versa. These findings provide more reference value for the selection of such systems as tunable bioresorbable prosthetic materials

    Study of e+eppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+eppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+eψ(3770)ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+eψ(3770)ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+eψ(3770)ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms.

    Get PDF
    Over half of all children with autism spectrum disorders (ASD) have gastrointestinal (GI) co-morbidities including chronic constipation, diarrhea, and irritable bowel syndrome. The severity of these symptoms has been correlated with the degree of GI microbial dysbiosis. The study objective was to assess tolerability of a probiotic (Bifidobacterium infantis) in combination with a bovine colostrum product (BCP) as a source of prebiotic oligosaccharides and to evaluate GI, microbiome and immune factors in children with ASD and GI co-morbidities. This pilot study is a randomized, double blind, controlled trial of combination treatment (BCP + B. infantis) vs. BCP alone in a cross-over study in children ages 2-11 with ASD and GI co-morbidities (n = 8). This 12-week study included 5 weeks of probiotic-prebiotic supplementation, followed by a two-week washout period, and 5 weeks of prebiotic only supplementation. The primary outcome of tolerability was assessed using validated questionnaires of GI function and atypical behaviors, along with side effects. Results suggest that the combination treatment is well-tolerated in this cohort. The most common side effect was mild gassiness. Some participants on both treatments saw a reduction in the frequency of certain GI symptoms, as well as reduced occurrence of particular aberrant behaviors. Improvement may be explained by a reduction in IL-13 and TNF-α production in some participants. Although limited conclusions can be drawn from this small pilot study, the results support the need for further research into the efficacy of these treatments
    corecore