1,516 research outputs found

    Poly-MTO, {(CH_3)_{0.92} Re O_3}_\infty, a Conducting Two-Dimensional Organometallic Oxide

    Get PDF
    Polymeric methyltrioxorhenium, {(CH_{3})_{0.92}ReO_{3}}_{\infty} (poly-MTO), is the first member of a new class of organometallic hybrids which adopts the structural pattern and physical properties of classical perovskites in two dimensions (2D). We demonstrate how the electronic structure of poly-MTO can be tailored by intercalation of organic donor molecules, such as tetrathiafulvalene (TTF) or bis-(ethylendithio)-tetrathiafulvalene (BEDT-TTF), and by the inorganic acceptor SbF3_3. Integration of donor molecules leads to a more insulating behavior of poly-MTO, whereas SbF3_3 insertion does not cause any significant change in the resistivity. The resistivity data of pure poly-MTO is remarkably well described by a two-dimensional electron system. Below 38 K an unusual resistivity behavior, similar to that found in doped cuprates, is observed: The resistivity initially increases approximately as ρ∌\rho \sim ln(1/T(1/T) before it changes into a T\sqrt{T} dependence below 2 K. As an explanation we suggest a crossover from purely two-dimensional charge-carrier diffusion within the \{ReO2_2\}∞_{\infty} planes at high temperatures to three-dimensional diffusion at low temperatures in a disorder-enhanced electron-electron interaction scenario (Altshuler-Aronov correction). Furthermore, a linear positive magnetoresistance was found in the insulating regime, which is caused by spatial localization of itinerant electrons at some of the Re atoms, which formally adopt a 5d15d^1 electronic configuration. X-ray diffraction, IR- and ESR-studies, temperature dependent magnetization and specific heat measurements in various magnetic fields suggest that the electronic structure of poly-MTO can safely be approximated by a purely 2D conductor.Comment: 15 pages, 16 figures, 2 table

    A Computationally Efficient Modeling Code for Sh-Waves in Austenitic Welds Using an Explicit Space-Time Green-Function

    Get PDF
    For ultrasonic inspection of austenitic welds and cladded components horizontally polarized shear (SH) waves — as generated by electromagnetic acoustic transducers (EMATs) — have certain benefits compared with quasi-vertically polarized shear and quasi-pressure waves. SH-waves suffer the least distortion of all three wave modes when propagated through anisotropic weld material and no energy is lost through mode conversion at the steel/free surface or base metal/weld interfaces. To explain experimentally observed phenomena and to predict the cases where SH-waves might be best employed, modeling of the respective wave propagation effects is useful. In this contribution, a computationally efficient modeling code is presented for SH-waves propagating in transversely isotropic media, thus particularly applicable to ideally fiber-textured austenitic weld material. An explicit space-time domain far-field representation of Green’s dyadic function has been derived with respect to the wave type under concern, the fiber direction being included as a free parameter. The obtained relationships have been applied to the Generalized Point-Source-Synthesis method (GPSS [1,2]) to model radiation, propagation and scattering effects. The code thus improved — SH-GPSS— is characterized by a considerable reduction of computer run-time and is therefore particularly convenient in view of a respective extension to inhomogeneous weldments. Numerical results are presented for both continuous wave and time-dependent rf-impulse modeling for austenitic weld metal specimens, covering field profiles as well as wave front snapshots for a phased array EMAT-probe

    Effect of Conventional Mouthrinses on Initial Bioadhesion to Enamel and Dentin in situ

    Get PDF
    Aim: The study aimed to investigate the effect of a customary fluoride solution, containing sodium fluoride and amine fluoride, on initial biofilm formation on enamel and dentin in situ compared directly to chlorhexidine. Methods: Bovine enamel and dentin specimens were mounted on maxillary splints carried by 9 subjects. After 1 min of pellicle formation, rinses with tap water (control), chlorhexidine (meridol med CHX 0.2%, GABA) and a fluoride mouthrinse (elmex, GABA) were performed for 1 min. Subsequently, the slabs were carried for another 8 h. The adherent bacteria were determined by DAPI staining, live-dead staining and determination of colony-forming units after desorption; glucan formation was visualized with concanavalin A. Additionally, energy-dispersive X-ray spectroscopy (EDX) analysis of the in situ biofilm layers was conducted, and contact angle measurements were performed. Statistical evaluation was performed by means of the Kruskal-Wallis test followed by the Mann-Whitney U test (p < 0.05). Results: In the control group, significantly higher amounts of adherent bacteria were detected on dentin (4.8 x 10⁶ ± 5.4 x 10⁶ bacteria/cmÂČ) than on enamel (1.2 x 10⁶ ± 1.5 x 10⁶ bacteria/cmÂČ , DAPI). Chlorhexidine significantly reduced the amount of adherent bacteria (dentin: 2.8 x 10⁔ ± 3.4 x 10⁔ bacteria/cmÂČ ; enamel: 4.2 x 10⁔ ± 8.7 x 10⁔ bacteria/cmÂČ). Rinses with the fluoride solution also significantly reduced bacterial adherence to dentin (8.1 x 10⁔ ± 1.5 x 10⁶ bacteria/cmÂČ). Fluoride could not be detected by EDX analysis of the biofilms. Fluoride mouthrinsing did not influence the wettability of the pellicle-covered enamel surface. Conclusion: In addition to the reduction of demineralization and antibacterial effects, fluorides inhibit initial biofilm formation on dental hard tissues considerably, especially on dentin

    Current cosmological constraints from a 10 parameter CMB analysis

    Full text link
    We compute the constraints on a ``standard'' 10 parameter cold dark matter (CDM) model from the most recent CMB and data and other observations, exploring 30 million discrete models and two continuous parameters. Our parameters are the densities of CDM, baryons, neutrinos, vacuum energy and curvature, the reionization optical depth, and the normalization and tilt for both scalar and tensor fluctuations. Our strongest constraints are on spatial curvature, -0.24 < Omega_k < 0.38, and CDM density, h^2 Omega_cdm <0.3, both at 95%. Including SN 1a constraints gives a positive cosmological constant at high significance. We explore the robustness of our results to various assumptions. We find that three different data subsets give qualitatively consistent constraints. Some of the technical issues that have the largest impact are the inclusion of calibration errors, closed models, gravity waves, reionization, nucleosynthesis constraints and 10-dimensional likelihood interpolation.Comment: Replaced to match published ApJ version. More details added. 13 ApJ pages. CMB movies and color figs at http://www.hep.upenn.edu/~max/10par_frames.html or from [email protected]

    Conservação da umidade do solo em pomar de pessegueiro utilizando cobertura morta de aveia preta.

    Get PDF
    bitstream/CPACT/11047/1/COMUNICADO_136.pd

    Whole-exome and HLA sequencing in Febrile infection-related epilepsy syndrome

    Get PDF
    Febrile infection‐related epilepsy syndrome (FIRES) is a devastating epilepsy characterized by new‐onset refractory status epilepticus with a prior febrile infection. We performed exome sequencing in 50 individuals with FIRES, including 27 patient–parent trios and 23 single probands, none of whom had pathogenic variants in established genes for epilepsies or neurodevelopmental disorders. We also performed HLA sequencing in 29 individuals with FIRES and 529 controls, which failed to identify prominent HLA alleles. The genetic architecture of FIRES is substantially different from other developmental and epileptic encephalopathies, and the underlying etiology remains elusive, requiring novel approaches to identify the underlying causative factors
    • 

    corecore