2,322 research outputs found

    Structure of the doublet bands in doubly odd nuclei: The case of 128Cs^{128}Cs

    Get PDF
    The structure of the ΔJ=1\Delta J = 1 doublet bands in 128Cs^{128}Cs is investigated within the framework of the Interacting Vector Boson Fermion Model (IVBFM). A new, purely collective interpretation of these bands is given on the basis of the used boson-fermion dynamical symmetry of the model. The energy levels of the doublet bands as well as the absolute B(E2)B(E2) and B(M1)B(M1) transition probabilities between the states of both yrast and yrare bands are described quite well. The observed odd-even staggering of both B(M1)B(M1) and B(E2)B(E2) values is reproduced by the introduction of an appropriate interaction term of quadrupole type, which produces such a staggering effect in the transition strengths. The calculations show that the appearance of doublet bands in certain odd-odd nuclei could be a consequence of the realization of a larger dynamical symmetry based on the non-compact supersymmetry group OSp(2Ω/12,R)OSp(2\Omega /12, R).Comment: 12 pages, 8 figure

    Collective excitations in the Unitary Correlation Operator Method and relativistic QRPA studies of exotic nuclei

    Full text link
    The collective excitation phenomena in atomic nuclei are studied in two different formulations of the Random Phase Approximation (RPA): (i) RPA based on correlated realistic nucleon-nucleon interactions constructed within the Unitary Correlation Operator Method (UCOM), and (ii) relativistic RPA (RRPA) derived from effective Lagrangians with density-dependent meson-exchange interactions. The former includes the dominant interaction-induced short-range central and tensor correlations by means of an unitary transformation. It is shown that UCOM-RPA correlations induced by collective nuclear vibrations recover a part of the residual long-range correlations that are not explicitly included in the UCOM Hartree-Fock ground state. Both RPA models are employed in studies of the isoscalar monopole resonance (ISGMR) in closed-shell nuclei across the nuclide chart, with an emphasis on the sensitivity of its properties on the constraints for the range of the UCOM correlation functions. Within the Relativistic Quasiparticle RPA (RQRPA) based on Relativistic Hartree-Bogoliubov model, the occurrence of pronounced low-lying dipole excitations is predicted in nuclei towards the proton drip-line. From the analysis of the transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.Comment: 15 pages, 4 figures, submitted to Physics of Atomic Nuclei, conference proceedings, "Frontiers in the Physics of Nucleus", St. Petersburg, 28. June-1. July, 200

    Bursts in the Chaotic Trajectory Lifetimes Preceding the Controlled Periodic Motion

    Get PDF
    The average lifetime (τ(H)\tau(H)) it takes for a randomly started trajectory to land in a small region (HH) on a chaotic attractor is studied. τ(H)\tau(H) is an important issue for controlling chaos. We point out that if the region HH is visited by a short periodic orbit, the lifetime τ(H)\tau(H) strongly deviates from the inverse of the naturally invariant measure contained within that region (μN(H)1\mu_N(H)^{-1}). We introduce the formula that relates τ(H)/μN(H)1\tau(H)/\mu_N(H)^{-1} to the expanding eigenvalue of the short periodic orbit visiting HH.Comment: Accepted for publication in Phys. Rev. E, 3 PS figure

    Collective excitations and particle production: from static nuclei to reactions at PANDA

    Get PDF

    Incompressibility of finite fermionic systems: stable and exotic atomic nuclei

    Get PDF
    The incompressibility of finite fermionic systems is investigated using analytical approaches and microscopic models. The incompressibility of a system is directly linked to the zero-point kinetic energy of constituent fermions, and this is a universal feature of fermionic systems. In the case of atomic nuclei, this implies a constant value of the incompressibility in medium-heavy and heavy nuclei. The evolution of nuclear incompressibility along Sn and Pb isotopic chains is analyzed using global microscopic models, based on both non-relativistic and relativistic energy functionals. The result is an almost constant incompressibility in stable nuclei and systems not far from stability, and a steep decrease in nuclei with pronounced neutron excess, caused by the emergence of a soft monopole mode in neutron-rich nuclei.Comment: 7 pages, 5 figure

    Transport, magnetic and superconducting properties of RuSr2RCu2O8 (R= Eu, Gd) doped with Sn

    Get PDF
    Ru{1-x}Sn{x}Sr2EuCu2O8 and Ru{1-x}Sn{x}Sr2GdCu2O8 have been comprehensively studied by microwave and dc resistivity and magnetoresistivity and by the dc Hall measurements. The magnetic ordering temperature T_m is considerably reduced with increasing Sn content. However, doping with Sn leads to only slight reduction of the superconducting critical temperature T_c accompanied with the increase of the upper critical field B_c2, indicating an increased disorder in the system and a reduced scattering length of the conducting holes in CuO2 layers. In spite of the increased scattering rate, the normal state resistivity and the Hall resistivity are reduced with respect to the pure compound, due to the increased number of itinerant holes in CuO2 layers, which represent the main conductivity channel. Most of the electrons in RuO2 layers are presumably localized, but the observed negative magnetoresistance and the extraordinary Hall effect lead to the conclusion that there exists a small number of itinerant electrons in RuO2_2 layers that exhibit colossal magnetoresistance.Comment: 10 pages, 9 figure

    New Description of the Doublet Bands in Doubly Odd Nuclei

    Get PDF
    The experimentally observed ΔI=1\Delta I = 1 doublet bands in some odd-odd nuclei are analyzed within the orthosymplectic extension of the Interacting Vector Boson Model (IVBM). A new, purely collective interpretation of these bands is given on the basis of the obtained boson-fermion dynamical symmetry of the model. It is illustrated by its application to three odd-odd nuclei from the A130A\sim 130 region, namely 126Pr^{126}Pr, 134Pr^{134}Pr and 132La^{132}La. The theoretical predictions for the energy levels of the doublet bands as well as E2E2 and M1M1 transition probabilities between the states of the yrast band in the last two nuclei are compared with experiment and the results of other theoretical approaches. The obtained results reveal the applicability of the orthosymplectic extension of the IVBM.Comment: 15 pages, 13 figure

    Nanoscale Electronic Order in Iron Pnictides

    Get PDF
    The charge distribution in RFeAs (R=La, Sm) iron pnictides is probed using As NQR. Whereas undoped and optimally-doped/overdoped compounds feature a single charge environment, two charge environments are detected in the underdoped region. Spin- lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point at a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed

    Misleading signatures of quantum chaos

    Full text link
    The main signature of chaos in a quantum system is provided by spectral statistical analysis of the nearest neighbor spacing distribution and the spectral rigidity given by Δ3(L)\Delta_3(L). It is shown that some standard unfolding procedures, like local unfolding and Gaussian broadening, lead to a spurious increase of the spectral rigidity that spoils the Δ3(L)\Delta_3(L) relationship with the regular or chaotic motion of the system. This effect can also be misinterpreted as Berry's saturation.Comment: 4 pages, 5 figures, submitted to Physical Review
    corecore