1,058 research outputs found
Nesting behaviour influences species-specific gas exchange across avian eggshells
Carefully controlled gas exchange across the eggshell is essential for the development of the avian embryo. Water vapour conductance (GH2O) across the shell, typically measured as mass loss during incubation, has been demonstrated to optimally ensure the healthy development of the embryo while avoiding desiccation. Accordingly, eggs exposed to sub-optimal gas exchange have reduced hatching success. We tested the association between eggshell GH2O and putative life-history correlates of adult birds, ecological nest parameters and physical characteristics of the egg itself to investigate how variation in GH2O has evolved to maintain optimal water loss across a diverse set of nest environments. We measured gas exchange through eggshell fragments in 151 British breeding bird species and fitted phylogenetically controlled, general linear models to test the relationship between GH2O and potential predictor parameters of each species. Of our 17 life-history traits, only two were retained in the final model: wet-incubating parent and nest type. Eggs of species where the parent habitually returned to the nest with wet plumage had significantly higher GH2O than those of parents that returned to the nest with dry plumage. Eggs of species nesting in ground burrows, cliffs and arboreal cups had significantly higher GH2O than those of species nesting on the ground in open nests or cups, in tree cavities and in shallow arboreal nests. Phylogenetic signal (measured as Pagel's λ) was intermediate in magnitude, suggesting that differences observed in the GH2O are dependent upon a combination of shared ancestry and species-specific life history and ecological traits. Although these data are correlational by nature, they are consistent with the hypothesis that parents constrained to return to the nest with wet plumage will increase the humidity of the nest environment, and the eggs of these species have evolved a higher GH2O to overcome this constraint and still achieve optimal water loss during incubation. We also suggest that eggs laid in cup nests and burrows may require a higher GH2O to overcome the increased humidity as a result from the confined nest microclimate lacking air movements through the nest. Taken together, these comparative data imply that species-specific levels of gas exchange across avian eggshells are variable and evolve in response to ecological and physical variation resulting from parental and nesting behaviours
Nitrate respiration and diel migration patterns of diatoms are linked in sediments underneath a microbial mat
Diatoms are among the few eukaryotes known to store nitrate (NO3−) and to use it as an electron acceptor for respiration in the absence of light and O2. Using microscopy and 15N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3− at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers
Genome sequence of an Enterobacter helveticus strain, 1159/04 (= LMG 23733), isolated from fruit powder
We report the draft genome sequence of Enterobacter helveticus strain LMG 23733, isolated from fruit powder. The draft genome assembly for E. helveticus strain LMG 23733 has a size of 4,635,476 bp and a G+C content of 55.9%
Neutron time-of-flight measurements of charged-particle energy loss in inertial confinement fusion plasmas
Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data
Detection of strongly processed ice in the central starburst of NGC4945
The composition of ice grains provides an important tool for the study of the
molecular environment of star forming regions. Using ISAAC at the VLT to obtain
spectra around 4.65 microns we have detected for the first time `XCN' and CO
ice in an extragalactic environment: the nuclear region of the nearby dusty
starburst/AGN galaxy NGC4945. The profile of the solid CO band reveals the
importance of thermal processing of the ice while the prominence of the XCN
band attests to the importance of energetic processing of the ice by FUV
radiation and/or energetic particles. In analogy to the processing of ices by
embedded protostars in our Galaxy, we attribute the processing of the ices in
the center of NGC4945 to ongoing massive star formation. Our M-band spectrum
also shows strong HI Pfund-beta and H2 0-0 S(9) line emission and gas phase CO
absorption lines. The HI, H2, PAH, gas phase CO and the ices seem to be
embedded in a rotating molecular disk which is undergoing vigorous star
formation. Recently, strong OCN- absorption has been detected in the spectrum
of the Galactic center star GC:IRS19. The most likely environment for the OCN-
absorption is the strongly UV-exposed GC molecular ring. The presence of
processed ice in the center of NGC4945 and our Galactic center leads us to
believe that processed ice may be a common characteristic of dense molecular
material in star forming galactic nuclei.Comment: 9 pages, 8 figures. Accepted for publication in A&A. Also available
at this http://www.astro.rug.nl/~spoon/publications.htm
Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis
Abstract
Background
Human-associated microbial communities include fungi, but we understand little about which fungal species are present, their relative and absolute abundances, and how antimicrobial therapy impacts fungal communities. The disease cystic fibrosis (CF) often involves chronic airway colonization by bacteria and fungi, and these infections cause irreversible lung damage. Fungi are detected more frequently in CF sputum samples upon initiation of antimicrobial therapy, and several studies have implicated the detection of fungi in sputum with worse outcomes. Thus, a more complete understanding of fungi in CF is required.
Results
We characterized the fungi and bacteria in expectorated sputa from six CF subjects. Samples were collected upon admission for systemic antibacterial therapy and upon the completion of treatment and analyzed using a pyrosequencing-based analysis of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA sequences. A mixture of Candida species and Malassezia dominated the mycobiome in all samples (74%–99% of fungal reads). There was not a striking trend correlating fungal and bacterial richness, and richness showed a decline after antibiotic therapy particularly for the bacteria. The fungal communities within a sputum sample resembled other samples from that subject despite the aggressive antibacterial therapy. Quantitative PCR analysis of fungal 18S rDNA sequences to assess fungal burden showed variation in fungal density in sputum before and after antibacterial therapy but no consistent directional trend. Analysis of Candida ITS1 sequences amplified from sputum or pure culture-derived genomic DNA from individual Candida species found little (<0.5%) or no variation in ITS1 sequences within or between strains, thereby validating this locus for the purpose of Candida species identification. We also report the enhancement of the publically available Visualization and Analysis of Microbial Population Structures (VAMPS) tool for the analysis of fungal communities in clinical samples.
Conclusions
Fungi are present in CF respiratory sputum. In CF, the use of intravenous antibiotic therapy often does not profoundly impact bacterial community structure, and we observed a similar stability in fungal species composition. Further studies are required to predict the effects of antibacterials on fungal burden in CF and fungal community stability in non-CF populations.http://deepblue.lib.umich.edu/bitstream/2027.42/134558/1/40168_2014_Article_67.pd
Characterization and Quantification of the Fungal Microbiome in Serial Samples from Individuals with Cystic Fibrosis
Background: Human-associated microbial communities include fungi, but we understand little about which fungal species are present, their relative and absolute abundances, and how antimicrobial therapy impacts fungal communities. The disease cystic fibrosis (CF) often involves chronic airway colonization by bacteria and fungi, and these infections cause irreversible lung damage. Fungi are detected more frequently in CF sputum samples upon initiation of antimicrobial therapy, and several studies have implicated the detection of fungi in sputum with worse outcomes. Thus, a more complete understanding of fungi in CF is required. Results: We characterized the fungi and bacteria in expectorated sputa from six CF subjects. Samples were collected upon admission for systemic antibacterial therapy and upon the completion of treatment and analyzed using a pyrosequencing-based analysis of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA sequences. A mixture of Candida species and Malassezia dominated the mycobiome in all samples (74% – 99% of fungal reads). There was not a striking trend correlating fungal and bacterial richness, and richness showed a decline after antibiotic therapy particularly for the bacteria. The fungal communities within a sputum sample resembled other samples from that subject despite the aggressive antibacterial therapy. Quantitative PCR analysis of fungal 18S rDNA sequences to assess fungal burden showed variation in fungal density in sputum before and after antibacterial therapy but no consistent directional trend. Analysis of Candida ITS1 sequences amplified from sputum or pure culture-derived genomic DNA from individual Candida species found little (\u3c0.5%) or no variation in ITS1 sequences within or between strains, thereby validating this locus for the purpose of Candida species identification. We also report the enhancement of the publically available Visualization and Analysis of Microbial Population Structures (VAMPS) tool for the analysis of fungal communities in clinical samples. Conclusions: Fungi are present in CF respiratory sputum. In CF, the use of intravenous antibiotic therapy often does not profoundly impact bacterial community structure, and we observed a similar stability in fungal species composition. Further studies are required to predict the effects of antibacterials on fungal burden in CF and fungalcommunity stability in non-CF populations
Multiphasic analysis of the temporal development of the distal gut microbiota in patients following ileal pouch anal anastomosis
Abstract
Background
The indigenous gut microbiota are thought to play a crucial role in the development and maintenance of the abnormal inflammatory responses that are the hallmark of inflammatory bowel disease. Direct tests of the role of the gut microbiome in these disorders are typically limited by the fact that sampling of the microbiota generally occurs once disease has become manifest. This limitation could potentially be circumvented by studying patients who undergo total proctocolectomy with ileal pouch anal anastomosis (IPAA) for the definitive treatment of ulcerative colitis. A subset of patients who undergo IPAA develops an inflammatory condition known as pouchitis, which is thought to mirror the pathogenesis of ulcerative colitis. Following the development of the microbiome of the pouch would allow characterization of the microbial community that predates the development of overt disease.
Results
We monitored the development of the pouch microbiota in four patients who underwent IPAA. Mucosal and luminal samples were obtained prior to takedown of the diverting ileostomy and compared to samples obtained 2, 4 and 8 weeks after intestinal continuity had been restored. Through the combined analysis of 16S rRNA-encoding gene amplicons, targeted 16S amplification and microbial cultivation, we observed major changes in structure and function of the pouch microbiota following ileostomy. There is a relative increase in anaerobic microorganisms with the capacity for fermentation of complex carbohydrates, which corresponds to the physical stasis of intestinal contents in the ileal pouch. Compared to the microbiome structure encountered in the colonic mucosa of healthy individuals, the pouch microbial community in three of the four individuals was quite distinct. In the fourth patient, a community that was much like that seen in a healthy colon was established, and this patient also had the most benign clinical course of the four patients, without the development of pouchitis 2 years after IPAA.
Conclusions
The microbiota that inhabit the ileal-anal pouch of patients who undergo IPAA for treatment of ulcerative colitis demonstrate significant structural and functional changes related to the restoration of fecal flow. Our preliminary results suggest once the pouch has assumed the physiologic role previously played by the intact colon, the precise structure and function of the pouch microbiome, relative to a normal colonic microbiota, will determine if there is establishment of a stable, healthy mucosal environment or the reinitiation of the pathogenic cascade that results in intestinal inflammation.http://deepblue.lib.umich.edu/bitstream/2027.42/112442/1/40168_2012_Article_10.pd
Search for Top Squark Pair Production in the Dielectron Channel
This report describes the first search for top squark pair production in the
channel stop_1 stopbar_1 -> b bbar chargino_1 chargino_1 -> ee+jets+MEt using
74.9 +- 8.9 pb^-1 of data collected using the D0 detector. A 95% confidence
level upper limit on sigma*B is presented. The limit is above the theoretical
expectation for sigma*B for this process, but does show the sensitivity of the
current D0 data set to a particular topology for new physics.Comment: Five pages, including three figures, submitted to PRD Brief Report
- …