146 research outputs found

    The Inclusion of Women’s Health in Sustainable Medical Mission Trip Models: A PA Student’s Perspective

    Get PDF
    Like many disadvantaged countries around the world, Nicaragua is visited by numerous medical missions each year. The efficacy of these missions relies on the organization’s relationship with the communities they serve. Although the general goal of all medical missions is to ultimately help underserved populations, many missions inadvertently do harm. Two critical causes of such inadvertent harm are lack of sustainable practices and failure to form a long-term relationship with the communities. Shenandoah University’s Physician Assistant Program has worked tirelessly to form an ideal medical mission model and relationship with El Ayudante, a local non-government humanitarian organization, and the local Ministry of Health. Since 2004, a medical team has been sent annually to care for the Nicaraguan people in the communities surrounding El Auydante. These rural communities have limited medical resources and limited access to care. A mere 31.5% of the female population is screened for cervical cancer. Likely a result, Nicaragua currently has the highest incidence of cervical cancer in Latin America. In addition to cervical cancer, these women have other concerns related to women’s health that have never been addressed by a healthcare provider. This is where Shenandoah’s women’s health team has had an important role. Ideally, this can be an example for other health professions and programs to adopt a similar model and include a women’s health team on their medical missions. This reflection shares my personal experiences and perspectives on this issue

    Majority Dynamics and Aggregation of Information in Social Networks

    Full text link
    Consider n individuals who, by popular vote, choose among q >= 2 alternatives, one of which is "better" than the others. Assume that each individual votes independently at random, and that the probability of voting for the better alternative is larger than the probability of voting for any other. It follows from the law of large numbers that a plurality vote among the n individuals would result in the correct outcome, with probability approaching one exponentially quickly as n tends to infinity. Our interest in this paper is in a variant of the process above where, after forming their initial opinions, the voters update their decisions based on some interaction with their neighbors in a social network. Our main example is "majority dynamics", in which each voter adopts the most popular opinion among its friends. The interaction repeats for some number of rounds and is then followed by a population-wide plurality vote. The question we tackle is that of "efficient aggregation of information": in which cases is the better alternative chosen with probability approaching one as n tends to infinity? Conversely, for which sequences of growing graphs does aggregation fail, so that the wrong alternative gets chosen with probability bounded away from zero? We construct a family of examples in which interaction prevents efficient aggregation of information, and give a condition on the social network which ensures that aggregation occurs. For the case of majority dynamics we also investigate the question of unanimity in the limit. In particular, if the voters' social network is an expander graph, we show that if the initial population is sufficiently biased towards a particular alternative then that alternative will eventually become the unanimous preference of the entire population.Comment: 22 page

    Relaxation, closing probabilities and transition from oscillatory to chaotic attractors in asymmetric neural networks

    Full text link
    Attractors in asymmetric neural networks with deterministic parallel dynamics were shown to present a "chaotic" regime at symmetry eta < 0.5, where the average length of the cycles increases exponentially with system size, and an oscillatory regime at high symmetry, where the typical length of the cycles is 2. We show, both with analytic arguments and numerically, that there is a sharp transition, at a critical symmetry \e_c=0.33, between a phase where the typical cycles have length 2 and basins of attraction of vanishing weight and a phase where the typical cycles are exponentially long with system size, and the weights of their attraction basins are distributed as in a Random Map with reversal symmetry. The time-scale after which cycles are reached grows exponentially with system size NN, and the exponent vanishes in the symmetric limit, where TN2/3T\propto N^{2/3}. The transition can be related to the dynamics of the infinite system (where cycles are never reached), using the closing probabilities as a tool. We also study the relaxation of the function E(t)=1/Nihi(t)E(t)=-1/N\sum_i |h_i(t)|, where hih_i is the local field experienced by the neuron ii. In the symmetric system, it plays the role of a Ljapunov function which drives the system towards its minima through steepest descent. This interpretation survives, even if only on the average, also for small asymmetry. This acts like an effective temperature: the larger is the asymmetry, the faster is the relaxation of EE, and the higher is the asymptotic value reached. EE reachs very deep minima in the fixed points of the dynamics, which are reached with vanishing probability, and attains a larger value on the typical attractors, which are cycles of length 2.Comment: 24 pages, 9 figures, accepted on Journal of Physics A: Math. Ge

    Attraction Basins as Gauges of Robustness against Boundary Conditions in Biological Complex Systems

    Get PDF
    One fundamental concept in the context of biological systems on which researches have flourished in the past decade is that of the apparent robustness of these systems, i.e., their ability to resist to perturbations or constraints induced by external or boundary elements such as electromagnetic fields acting on neural networks, micro-RNAs acting on genetic networks and even hormone flows acting both on neural and genetic networks. Recent studies have shown the importance of addressing the question of the environmental robustness of biological networks such as neural and genetic networks. In some cases, external regulatory elements can be given a relevant formal representation by assimilating them to or modeling them by boundary conditions. This article presents a generic mathematical approach to understand the influence of boundary elements on the dynamics of regulation networks, considering their attraction basins as gauges of their robustness. The application of this method on a real genetic regulation network will point out a mathematical explanation of a biological phenomenon which has only been observed experimentally until now, namely the necessity of the presence of gibberellin for the flower of the plant Arabidopsis thaliana to develop normally

    Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings

    Full text link
    Constraint programming is a paradigm wherein relations between variables are stated in the form of constraints. Many real life problems come from uncertain and dynamic environments, where the initial constraints and domains may change during its execution. Thus, the solution found for the problem may become invalid. The search forrobustsolutions for constraint satisfaction problems (CSPs) has become an important issue in the ¿eld of constraint programming. In some cases, there exists knowledge about the uncertain and dynamic environment. In other cases, this information is unknown or hard to obtain. In this paper, we consider CSPs with discrete and ordered domains where changes only involve restrictions or expansions of domains or constraints. To this end, we model CSPs as weighted CSPs (WCSPs) by assigning weights to each valid tuple of the problem constraints and domains. The weight of each valid tuple is based on its distance from the borders of the space of valid tuples in the corresponding constraint/domain. This distance is estimated by a new concept introduced in this paper: coverings. Thus, the best solution for the modeled WCSP can be considered as a most robust solution for the original CSP according to these assumptionsThis work has been partially supported by the research projects TIN2010-20976-C02-01 (Min. de Ciencia e Innovacion, Spain) and P19/08 (Min. de Fomento, Spain-FEDER), and the fellowship program FPU.Climent Aunés, LI.; Wallace, RJ.; Salido Gregorio, MA.; Barber Sanchís, F. (2013). Finding robust solutions for constraint satisfaction problems with discrete and ordered domains by coverings. Artificial Intelligence Review. 1-26. https://doi.org/10.1007/s10462-013-9420-0S126Climent L, Salido M, Barber F (2011) Reformulating dynamic linear constraint satisfaction problems as weighted csps for searching robust solutions. In: Ninth symposium of abstraction, reformulation, and approximation (SARA-11), pp 34–41Dechter R, Dechter A (1988) Belief maintenance in dynamic constraint networks. In: Proceedings of the 7th national conference on, artificial intelligence (AAAI-88), pp 37–42Dechter R, Meiri I, Pearl J (1991) Temporal constraint networks. Artif Intell 49(1):61–95Fargier H, Lang J (1993) Uncertainty in constraint satisfaction problems: a probabilistic approach. In: Proceedings of the symbolic and quantitative approaches to reasoning and uncertainty (EC-SQARU-93), pp 97–104Fargier H, Lang J, Schiex T (1996) Mixed constraint satisfaction: a framework for decision problems under incomplete knowledge. In: Proceedings of the 13th national conference on, artificial intelligence, pp 175–180Fowler D, Brown K (2000) Branching constraint satisfaction problems for solutions robust under likely changes. In: Proceedings of the international conference on principles and practice of constraint programming (CP-2000), pp 500–504Goles E, Martínez S (1990) Neural and automata networks: dynamical behavior and applications. Kluwer Academic Publishers, DordrechtHays W (1973) Statistics for the social sciences, vol 410, 2nd edn. Holt, Rinehart and Winston, New YorkHebrard E (2006) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South WalesHerrmann H, Schneider C, Moreira A, Andrade Jr J, Havlin S (2011) Onion-like network topology enhances robustness against malicious attacks. J Stat Mech Theory Exp 2011(1):P01,027Larrosa J, Schiex T (2004) Solving weighted CSP by maintaining arc consistency. Artif Intell 159:1–26Larrosa J, Meseguer P, Schiex T (1999) Maintaining reversible DAC for Max-CSP. J Artif Intell 107(1):149–163Mackworth A (1977) On reading sketch maps. In: Proceedings of IJCAI’77, pp 598–606Sam J (1995) Constraint consistency techniques for continuous domains. These de doctorat, École polytechnique fédérale de LausanneSchiex T, Fargier H, Verfaillie G (1995) Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th international joint conference on, artificial intelligence (IJCAI-95), pp 631–637Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: a survey. Constraints 10(3):253–281Wallace R, Freuder E (1998) Stable solutions for dynamic constraint satisfaction problems. In: Proceedings of the 4th international conference on principles and practice of constraint programming (CP-98), pp 447–461Wallace RJ, Grimes D (2010) Problem-structure versus solution-based methods for solving dynamic constraint satisfaction problems. In: Proceedings of the 22nd international conference on tools with artificial intelligence (ICTAI-10), IEEEWalsh T (2002) Stochastic constraint programming. In: Proceedings of the 15th European conference on, artificial intelligence (ECAI-02), pp 111–115William F (2006) Topology and its applications. Wiley, New YorkWiner B (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New YorkYorke-Smith N, Gervet C (2009) Certainty closure: reliable constraint reasoning with incomplete or erroneous data. J ACM Trans Comput Log (TOCL) 10(1):

    On the complexity of acyclic modules in automata networks

    Full text link
    Modules were introduced as an extension of Boolean automata networks. They have inputs which are used in the computation said modules perform, and can be used to wire modules with each other. In the present paper we extend this new formalism and study the specific case of acyclic modules. These modules prove to be well described in their limit behavior by functions called output functions. We provide other results that offer an upper bound on the number of attractors in an acyclic module when wired recursively into an automata network, alongside a diversity of complexity results around the difficulty of deciding the existence of cycles depending on the number of inputs and the size of said cycle.Comment: 21 page

    Abundances of the elements in the solar system

    Full text link
    A review of the abundances and condensation temperatures of the elements and their nuclides in the solar nebula and in chondritic meteorites. Abundances of the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New York: Springer-Verlag, p. 560-63

    ANN multiscale model of anti-HIV Drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks

    Get PDF
    [Abstract] This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.Ministerio de Educación, Cultura y Deportes; AGL2011-30563-C03-0
    corecore