60 research outputs found

    Gene therapy of orthotopic hepatocellular carcinoma in rats using adenovirus coding for interleukin 12

    Get PDF
    The use of gene therapy to enhance antitumor immunity has emerged as a promising procedure to fight cancer. In this study we have tested the ability of an adenovirus carrying interleukin 12 (IL-12) gene (AdCMVIL-12) to eliminate tumoral lesions in 3 animal models of orthotopic hepatocellular carcinoma (HCC). Intratumoral injection of AdCMVIL-12 in animals with a single big tumor nodule implanted in the liver resulted in significant inhibition of tumor growth in a dose-dependent manner. Fifty percent of animals that received a dose of 5 x 10(9) plaque-forming units, showed complete regression of the tumor 2 weeks after treatment. In animals with 2 independent tumor nodules in the left liver lobe, injection in only one of them of 5 x 10(9) pfu AdCMVIL-12 induced, 15 days after therapy, complete regression of 50% of treated tumors and also of 50% of untreated lesions, with 60% long-term survival. Rats that were tumor free after therapy with AdCMVIL-12 showed protection against tumor rechallenge. A group of rats received the carcinogen diethylnitrosamine and developed multiple hepatic dysplasic nodules of 1 to 5 mm in diameter. These animals were treated by intrahepatic artery injection of either AdCMVIL-12 (5 x 10(9) pfu) or control vector. In this model AdCMVIL-12 induced complete tumor regression in 20% of treated rats and inhibited tumor growth in 60% of cases with an increase in rat survival. Activation of natural killer (NK) cells and inhibition of angiogenesis were found to be antitumor mechanisms set in motion by AdCMVIL-12. Our data indicate that experimental HCC can be efficiently treated by intratumoral or intravascular injection of adenovirus expressing IL-12

    Magnetic resonance imaging of brain angiogenesis after stroke

    Get PDF
    Stroke is a major cause of mortality and long-term disability worldwide. The initial changes in local perfusion and tissue status underlying loss of brain function are increasingly investigated with noninvasive imaging methods. In addition, there is a growing interest in imaging of processes that contribute to post-stroke recovery. In this review, we discuss the application of magnetic resonance imaging (MRI) to assess the formation of new vessels by angiogenesis, which is hypothesized to participate in brain plasticity and functional recovery after stroke. The excellent soft tissue contrast, high spatial and temporal resolution, and versatility render MRI particularly suitable to monitor the dynamic processes involved in vascular remodeling after stroke. Here we review recent advances in the field of MR imaging that are aimed at assessment of tissue perfusion and microvascular characteristics, including cerebral blood flow and volume, vascular density, size and integrity. The potential of MRI to noninvasively monitor the evolution of post-ischemic angiogenic processes is demonstrated from a variety of in vivo studies in experimental stroke models. Finally, we discuss some pitfalls and limitations that may critically affect the accuracy and interpretation of MRI-based measures of (neo)vascularization after stroke

    Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges

    Get PDF
    Potential applications of tissue engineering in regenerative medicine range from structural tissues to organs with complex function. This review focuses on the engineering of heart valve tissue, a goal which involves a unique combination of biological, engineering, and technological hurdles. We emphasize basic concepts, approaches and methods, progress made, and remaining challenges. To provide a framework for understanding the enabling scientific principles, we first examine the elements and features of normal heart valve functional structure, biomechanics, development, maturation, remodeling, and response to injury. Following a discussion of the fundamental principles of tissue engineering applicable to heart valves, we examine three approaches to achieving the goal of an engineered tissue heart valve: (1) cell seeding of biodegradable synthetic scaffolds, (2) cell seeding of processed tissue scaffolds, and (3) in-vivo repopulation by circulating endogenous cells of implanted substrates without prior in-vitro cell seeding. Lastly, we analyze challenges to the field and suggest future directions for both preclinical and translational (clinical) studies that will be needed to address key regulatory issues for safety and efficacy of the application of tissue engineering and regenerative approaches to heart valves. Although modest progress has been made toward the goal of a clinically useful tissue engineered heart valve, further success and ultimate human benefit will be dependent upon advances in biodegradable polymers and other scaffolds, cellular manipulation, strategies for rebuilding the extracellular matrix, and techniques to characterize and potentially non-invasively assess the speed and quality of tissue healing and remodeling

    Natural animal magnetism

    No full text

    Artificial reporter gene providing MRI contrast based on proton exchange.

    No full text
    Item does not contain fulltextExisting magnetic resonance reporter genes all rely on the presence of (super)paramagnetic substances and employ water relaxation to gain contrast. We designed a nonmetallic, biodegradable, lysine rich-protein (LRP) reporter, the prototype of a potential family of genetically engineered reporters expressing artificial proteins with frequency-selective contrast. This endogenous contrast, based on transfer of radiofrequency labeling from the reporter's amide protons to water protons, can be switched on and off

    <i>In vivo</i> Tracking of Dendritic Cell using MRI Reporter Gene, Ferritin

    No full text
    <div><p>The noninvasive imaging of dendritic cells (DCs) migrated into lymph nodes (LNs) can provide helpful information on designing DCs-based immunotherapeutic strategies. This study is to investigate the influence of transduction of human ferritin heavy chain (FTH) and green fluorescence protein (GFP) genes on inherent properties of DCs, and the feasibility of FTH as a magnetic resonance imaging (MRI) reporter gene to track DCs migration into LNs. FTH-DCs were established by the introduction of FTH and GFP genes into the DC cell line (DC2.4) using lentivirus. The changes in the rate of MRI signal decay (R<sub>2</sub>*) resulting from FTH transduction were analyzed in cell phantoms as well as popliteal LN of mice after subcutaneous injection of those cells into hind limb foot pad by using a multiple gradient echo sequence on a 9.4 T MR scanner. The transduction of FTH and GFP did not influence the proliferation and migration abilities of DCs. The expression of co-stimulatory molecules (CD40, CD80 and CD86) in FTH-DCs was similar to that of DCs. FTH-DCs exhibited increased iron storage capacity, and displayed a significantly higher transverse relaxation rate (R<sub>2</sub>*) as compared to DCs in phantom. LNs with FTH-DCs exhibited negative contrast, leading to a high R<sub>2</sub>* in both <i>in vivo</i> and <i>ex vivo</i> T<sub>2</sub>*-weighted images compared to DCs. On histological analysis FTH-DCs migrated to the subcapsular sinus and the T cell zone of LN, where they highly expressed CD25 to bind and stimulate T cells. Our study addresses the feasibility of FTH as an MRI reporter gene to track DCs migration into LNs without alteration of their inherent properties. This study suggests that FTH-based MRI could be a useful technique to longitudinally monitor DCs and evaluate the therapeutic efficacy of DC-based vaccines.</p></div
    • ā€¦
    corecore