517 research outputs found

    Introduction

    Get PDF

    Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions

    Full text link
    The Heisenberg nearest neighbour antiferromagnet on the pyrochlore (3D) lattice is highly frustrated and does not order at low temperature where spin-spin correlations remain short ranged. Dzyaloshinsky-Moriya interactions (DMI) may be present in pyrochlore compounds as is shown, and the consequences of such interactions on the magnetic properties are investigated through mean field approximation and monte carlo simulations. It is found that DMI (if present) tremendously change the low temperature behaviour of the system. At a temperature of the order of the DMI a phase transition to a long range ordered state takes place. The ordered magnetic structures are explicited for the different possible DMI which are introduced on the basis of symmetry arguments. The relevance of such a scenario for pyrochlore compounds in which an ordered magnetic structure is observed experimentally is dicussed

    Magnetic frustration in the spinel compounds Ge Co_2 O_4 and Ge Ni_2 O_4

    Full text link
    In both spinel compounds GeCo2_2O4_4 and GeNi2_2O4_4 which order antiferromagnetically (at TN=23.5KT_N = 23.5 K and TN1=12.13KT_{N_1} = 12.13 K, TN2=11.46KT_{N_2} = 11.46 K) with different Curie Weiss temperatures (TCWT_{CW}=80.5 K and -15 K), the usual magnetic frustration criterion f=∣TCW∣/TN>>1f=|T_{CW}|/T_N>>1 is not fulfilled. Using neutron powder diffraction and magnetization measurements up to 55 T, both compounds are found with a close magnetic ground state at low temperature and a similar magnetic behavior (but with a different energy scale), even though spin anisotropy and first neighbor exchange interactions are quite different. This magnetic behavior can be understood when considering the main four magnetic exchange interactions. Frustration mechanisms are then enlightened.Comment: submitted to Phys.Rev.B (2006

    Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid

    Full text link
    The quantum pyrochlore antiferromagnet is studied by perturbative expansions and exact diagonalization of small clusters. We find that the ground state is a spin-liquid state: The spin-spin correlation functions decay exponentially with distance and the correlation length never exceeds the interatomic distance. The calculated magnetic neutron diffraction cross section is in very good agreement with experiments performed on Y(Sc)Mn2. The low energy excitations are singlet-singlet ones, with a finite spin gap.Comment: 4 pages, 4 figure

    Classical heisenberg antiferromagnet away from the pyrochlore lattice limit: entropic versus energetic selection

    Full text link
    The stability of the disordered ground state of the classical Heisenberg pyrochlore antiferromagnet is studied within extensive Monte Carlo simulations by introducing an additional exchange interaction Jâ€ČJ' that interpolates between the pyrochlore lattice (Jâ€Č=0J'=0) and the face-centered cubic lattice (Jâ€Č=JJ'=J). It is found that for Jâ€Č/JJ'/J as low as Jâ€Č/J≄0.01J'/J\ge 0.01, the system is long range ordered : the disordered ground state of the pyrochlore antiferromagnet is unstable when introducing very small deviations from the pure Jâ€Č=0J'=0 limit. Furthermore, it is found that the selected phase is a collinear state energetically greater than the incommensurate phase suggested by a mean field analysis. To our knowledge this is the first example where entropic selection prevails over the energetic one.Comment: 5 (two-column revtex4) pages, 1 table, 7 ps/eps figures. Submitted to Phys. Rev.

    10 simple rules to create a serious game, illustrated with examples from structural biology

    Full text link
    Serious scientific games are games whose purpose is not only fun. In the field of science, the serious goals include crucial activities for scientists: outreach, teaching and research. The number of serious games is increasing rapidly, in particular citizen science games, games that allow people to produce and/or analyze scientific data. Interestingly, it is possible to build a set of rules providing a guideline to create or improve serious games. We present arguments gathered from our own experience ( Phylo , DocMolecules , HiRE-RNA contest and Pangu) as well as examples from the growing literature on scientific serious games

    Static Correlation and Dynamical Properties of Tb3+-moments in Tb2Ti2O7 -Neutron Scattering Study-

    Full text link
    Static and dynamical properties of the magnetic moment system of pyrochlore compound Tb2Ti2O7 with strong magnetic frustration, have been investigated down to the temperature T=0.4 K by neutron scattering on a single crystal sample. The scattering vector (Q)-dependence of the magnetic scattering intensity becomes appreciable with decreasing T at around 30 K, indicating the development of the magnetic correlation. From the observed energy profiles, the elastic, quasi elastic and inelastic components have been separately obtained. The quasi elastic component corresponds to the diffusive motion of the magnetic moments within the lowest states, which are formed of the lowest energy levels of Tb3+ ions. Magnetic correlation pattern which can roughly reproduce the Q-dependence of the scattering intensities of the elastic and quasi elastic component is discussed based on the trial calculations for clusters of 7 moments belonging to two corner-sharing tetrahedra. A possible origin of the glassy state, which develops at around 1.5 K with decreasing T is discussed.Comment: 10 pages, 12 figures, to be published in J. Phys. Soc. Jpn. 71(2002)No.2 59

    Tricritical transition in the classical XY model on Kagom\'e lattice under local anisotropy

    Full text link
    Using mean-field theory and high resolution Monte Carlo simulation technique based on multi-histogram method, we have investigated the critical properties of an antiferromagnetic XY model on the 2D Kagom\'e lattice, with single ion easy-axes anisotropy. The mean-field theory predicts second-order phase transition from disordered to all-in all-out state for any value of anisotropy for this model. However, Monte Carlo simulations result in first order transition for small values of anisotropy which turns to second order with increasing strength of anisotropy, indicating the existence of a tricritical point for this model. The critical exponents, obtained by finite-size scaling methods, show that the transition is in Ising universality class for large values of anisotropy, while the critical behaviour of the system deviates from 2D-ϕ6\phi^6 model near the tricritical point. This suggests the possibility for existence of a new tricritical universality in two-dimensions

    MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst

    Full text link
    A bifunctional MOF catalyst containing coordinatively unsaturated Cr3+ sites and palladium nanoparticles (Pd@MIL-101) has been used for the cyclization of citronellal to isopulegol and for the one-pot tandem isomerization/hydrogenation of citronellal to menthol. The MOF was found to be stable under the reaction conditions used, and the results obtained indicate that the performance of this bifunctional solid catalyst is comparable with other state-of-the-art materials for the tandem reaction: Full citronellal conversion was attained over Pd@MIL-101 in 18 h, with 86% selectivity to menthols and a diastereoselectivity of 81% to the desired (-)-menthol, while up to 30 h were necessary for attaining similar values over Ir/H-beta under analogous reaction conditions.Financial support by Ministerio de Educacion y Ciencia e Innovacion (Project MIYCIN, CSD2009-00050; PROGRAMA CONSOLIDER. INGENIO 2009), Generalidad Valenciana (GV PROMETEO/2008/130) and the CSIC (Proyectos Intramurales Especiales 201080I020) is gratefully acknowledged.GarcĂ­a Cirujano, F.; LlabrĂ©s I Xamena, FX.; Corma CanĂłs, A. (2012). MOFs as multifunctional catalysts: One-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. Dalton Transactions. 41:4249-4254. https://doi.org/10.1039/c2dt12480gS4249425441Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450. doi:10.1039/b807080fWang, Z., & Cohen, S. M. (2009). Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 38(5), 1315. doi:10.1039/b802258pBanerjee, M., Das, S., Yoon, M., Choi, H. J., Hyun, M. H., Park, S. M., 
 Kim, K. (2009). Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal−Organic Porous Materials. Journal of the American Chemical Society, 131(22), 7524-7525. doi:10.1021/ja901440gGASCON, J., AKTAY, U., HERNANDEZALONSO, M., VANKLINK, G., & KAPTEIJN, F. (2009). Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 261(1), 75-87. doi:10.1016/j.jcat.2008.11.010Hasegawa, S., Horike, S., Matsuda, R., Furukawa, S., Mochizuki, K., Kinoshita, Y., & Kitagawa, S. (2007). Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand:  Selective Sorption and Catalysis. Journal of the American Chemical Society, 129(9), 2607-2614. doi:10.1021/ja067374yCho, S.-H., Ma, B., Nguyen, S. T., Hupp, J. T., & Albrecht-Schmitt, T. E. (2006). A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun., (24), 2563-2565. doi:10.1039/b600408cZhang, X., LlabrĂ©s i Xamena, F. X., & Corma, A. (2009). Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 265(2), 155-160. doi:10.1016/j.jcat.2009.04.021Meilikhov, M., Yusenko, K., Esken, D., Turner, S., Van Tendeloo, G., & Fischer, R. A. (2010). Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions. European Journal of Inorganic Chemistry, 2010(24), 3701-3714. doi:10.1002/ejic.201000473Henschel, A., Gedrich, K., Kraehnert, R., & Kaskel, S. (2008). Catalytic properties of MIL-101. Chemical Communications, (35), 4192. doi:10.1039/b718371bVermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038dWu, P., Wang, J., Li, Y., He, C., Xie, Z., & Duan, C. (2011). Luminescent Sensing and Catalytic Performances of a Multifunctional Lanthanide-Organic Framework Comprising a Triphenylamine Moiety. Advanced Functional Materials, 21(14), 2788-2794. doi:10.1002/adfm.201100115Pan, Y., Yuan, B., Li, Y., & He, D. (2010). Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal–organic framework. Chemical Communications, 46(13), 2280. doi:10.1039/b922061eCliment, M. J., Corma, A., Guil-LĂłpez, R., Iborra, S., & Primo, J. (1998). Use of Mesoporous MCM-41 Aluminosilicates as Catalysts in the Preparation of Fine Chemicals. Journal of Catalysis, 175(1), 70-79. doi:10.1006/jcat.1998.1970Climent, M. J., Corma, A., Iborra, S., & Velty, A. (2002). Designing the adequate base solid catalyst with Lewis or Bronsted basic sites or with acid–base pairs. Journal of Molecular Catalysis A: Chemical, 182-183, 327-342. doi:10.1016/s1381-1169(01)00501-5Boronat, M., Climent, M. J., Corma, A., Iborra, S., MontĂłn, R., & Sabater, M. J. (2010). Bifunctional Acid-Base Ionic Liquid Organocatalysts with a Controlled Distance Between Acid and Base Sites. Chemistry - A European Journal, 16(4), 1221-1231. doi:10.1002/chem.200901519Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272zFerey, G. (2005). A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science, 309(5743), 2040-2042. doi:10.1126/science.1116275Corma, A., & Renz, M. (2004). Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl–ene reaction. Chem. Commun., (5), 550-551. doi:10.1039/b313738dIosif, F., Coman, S., PĂąrvulescu, V., Grange, P., Delsarte, S., Vos, D. D., & Jacobs, P. (2004). Ir-Beta zeolite as a heterogeneous catalyst for the one-pot transformation of citronellal to menthol. Chem. Commun., (11), 1292-1293. doi:10.1039/b403692aNeaĆŁu, F., Coman, S., PĂąrvulescu, V. I., Poncelet, G., De Vos, D., & Jacobs, P. (2009). Heterogeneous Catalytic Transformation of Citronellal to Menthol in a Single Step on Ir-Beta Zeolite Catalysts. Topics in Catalysis, 52(9), 1292-1300. doi:10.1007/s11244-009-9270-9MERTENS, P., VERPOORT, F., PARVULESCU, A., & DEVOS, D. (2006). Pt/H-beta zeolites as productive bifunctional catalysts for the one-step citronellal-to-menthol conversion. Journal of Catalysis, 243(1), 7-13. doi:10.1016/j.jcat.2006.06.017Da Silva Rocha, K. A., Robles-Dutenhefner, P. A., Sousa, E. M. B., Kozhevnikova, E. F., Kozhevnikov, I. V., & Gusevskaya, E. V. (2007). Pd–heteropoly acid as a bifunctional heterogeneous catalyst for one-pot conversion of citronellal to menthol. Applied Catalysis A: General, 317(2), 171-174. doi:10.1016/j.apcata.2006.10.019Trasarti, A. F., Marchi, A. J., & Apesteguı́a, C. R. (2004). Highly selective synthesis of menthols from citral in a one-step process. Journal of Catalysis, 224(2), 484-488. doi:10.1016/j.jcat.2004.03.016TRASARTI, A., MARCHI, A., & APESTEGUIA, C. (2007). Design of catalyst systems for the one-pot synthesis of menthols from citral. Journal of Catalysis, 247(2), 155-165. doi:10.1016/j.jcat.2007.01.016Alaerts, L., SĂ©guin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220Horcajada, P., SurblĂ©, S., Serre, C., Hong, D.-Y., Seo, Y.-K., Chang, J.-S., 
 FĂ©rey, G. (2007). Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun., (27), 2820-2822. doi:10.1039/b704325bRavon, U., Chaplais, G., Chizallet, C., Seyyedi, B., Bonino, F., Bordiga, S., 
 Farrusseng, D. (2010). Investigation of Acid Centers in MIL-53(Al, Ga) for BrĂžnsted-Type Catalysis: In Situ FTIR and Ab Initio Molecular Modeling. ChemCatChem, 2(10), 1235-1238. doi:10.1002/cctc.201000055Vimont, A., Leclerc, H., MaugĂ©, F., Daturi, M., Lavalley, J.-C., SurblĂ©, S., 
 FĂ©rey, G. (2007). Creation of Controlled BrĂžnsted Acidity on a Zeotypic Mesoporous Chromium(III) Carboxylate by Grafting Water and Alcohol Molecules. The Journal of Physical Chemistry C, 111(1), 383-388. doi:10.1021/jp064686
    • 

    corecore