28,073 research outputs found

    Integrated command, control, communications and computation system functional architecture

    Get PDF
    The functional architecture for an integrated command, control, communications, and computation system applicable to the command and control portion of the NASA End-to-End Data. System is described including the downlink data processing and analysis functions required to support the uplink processes. The functional architecture is composed of four elements: (1) the functional hierarchy which provides the decomposition and allocation of the command and control functions to the system elements; (2) the key system features which summarize the major system capabilities; (3) the operational activity threads which illustrate the interrelationahip between the system elements; and (4) the interfaces which illustrate those elements that originate or generate data and those elements that use the data. The interfaces also provide a description of the data and the data utilization and access techniques

    Specialization of the rostral prefrontal cortex for distinct analogy processes

    Get PDF
    Analogical reasoning is central to learning and abstract thinking. It involves using a more familiar situation (source) to make inferences about a less familiar situation (target). According to the predominant cognitive models, analogical reasoning includes 1) generation of structured mental representations and 2) mapping based on structural similarities between them. This study used functional magnetic resonance imaging to specify the role of rostral prefrontal cortex (PFC) in these distinct processes. An experimental paradigm was designed that enabled differentiation between these processes, by temporal separation of the presentation of the source and the target. Within rostral PFC, a lateral subregion was activated by analogy task both during study of the source (before the source could be compared with a target) and when the target appeared. This may suggest that this subregion supports fundamental analogy processes such as generating structured representations of stimuli but is not specific to one particular processing stage. By contrast, a dorsomedial subregion of rostral PFC showed an interaction between task (analogy vs. control) and period (more activated when the target appeared). We propose that this region is involved in comparison or mapping processes. These results add to the growing evidence for functional differentiation between rostral PFC subregions

    Active vibration damping of the Space Shuttle remote manipulator system

    Get PDF
    The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback

    Recent activities within the Aeroservoelasticity Branch at the NASA Langley Research Center

    Get PDF
    The objective of research in aeroservoelasticity at the NASA Langley Research Center is to enhance the modeling, analysis, and multidisciplinary design methodologies for obtaining multifunction digital control systems for application to flexible flight vehicles. Recent accomplishments are discussed, and a status report on current activities within the Aeroservoelasticity Branch is presented. In the area of modeling, improvements to the Minimum-State Method of approximating unsteady aerodynamics are shown to provide precise, low-order aeroservoelastic models for design and simulation activities. Analytical methods based on Matched Filter Theory and Random Process Theory to provide efficient and direct predictions of the critical gust profile and the time-correlated gust loads for linear structural design considerations are also discussed. Two research projects leading towards improved design methodology are summarized. The first program is developing an integrated structure/control design capability based on hierarchical problem decomposition, multilevel optimization and analytical sensitivities. The second program provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. In terms of methodology validation and application the current activities associated with the Active Flexible Wing project are reviewed

    On the derivation of Fourier's law in stochastic energy exchange systems

    Full text link
    We present a detailed derivation of Fourier's law in a class of stochastic energy exchange systems that naturally characterize two-dimensional mechanical systems of locally confined particles in interaction. The stochastic systems consist of an array of energy variables which can be partially exchanged among nearest neighbours at variable rates. We provide two independent derivations of the thermal conductivity and prove this quantity is identical to the frequency of energy exchanges. The first derivation relies on the diffusion of the Helfand moment, which is determined solely by static averages. The second approach relies on a gradient expansion of the probability measure around a non-equilibrium stationary state. The linear part of the heat current is determined by local thermal equilibrium distributions which solve a Boltzmann-like equation. A numerical scheme is presented with computations of the conductivity along our two methods. The results are in excellent agreement with our theory.Comment: 19 pages, 5 figures, to appear in Journal of Statistical Mechanics (JSTAT

    Hysteresis loops of magnetic thin films with perpendicular anisotropy

    Full text link
    We model the magnetization of quasi two-dimensional systems with easy perpendicular (z-)axis anisotropy upon change of external magnetic field along z. The model is derived from the Landau-Lifshitz-Gilbert equation for magnetization evolution, written in closed form in terms of the z component of the magnetization only. The model includes--in addition to the external field--magnetic exchange, dipolar interactions and structural disorder. The phase diagram in the disorder/interaction strength plane is presented, and the different qualitative regimes are analyzed. The results compare very well with observed experimental hysteresis loops and spatial magnetization patterns, as for instance for the case of Co-Pt multilayers.Comment: 8 pages, 8 figure

    Dissociation of Hemoglobin into Subunits II. HUMAN OXYHEMOGLOBIN: GEL FILTRATION STUDIES

    Get PDF
    Abstract The dissociation of normal human oxyhemoglobin has been studied by gel filtration under conditions of neutral pH and moderate ionic strength, with the use of both integral boundaries, formed between solution and solvent, and finite difference boundaries, formed between solution and solution. The experimental data obtained have been treated by nonlinear least squares procedures to estimate the relevant parameters with their associated standard errors. For this purpose, theoretical equations have been derived for two models, firstly a simple dimer-tetramer reversible equilibrium, and secondly a monomer-dimer-trimer-tetramer reversible equilibrium. In both models the dependence on concentration of the elution volume of the individual species has been taken into account

    Non-Volatile Magnonic Logic Circuits Engineering

    Full text link
    We propose a concept of magnetic logic circuits engineering, which takes an advantage of magnetization as a computational state variable and exploits spin waves for information transmission. The circuits consist of magneto-electric cells connected via spin wave buses. We present the result of numerical modeling showing the magneto-electric cell switching as a function of the amplitude as well as the phase of the spin wave. The phase-dependent switching makes it possible to engineer logic gates by exploiting spin wave buses as passive logic elements providing a certain phase-shift to the propagating spin waves. We present a library of logic gates consisting of magneto-electric cells and spin wave buses providing 0 or p phase shifts. The utilization of phases in addition to amplitudes is a powerful tool which let us construct logic circuits with a fewer number of elements than required for CMOS technology. As an example, we present the design of the magnonic Full Adder Circuit comprising only 5 magneto-electric cells. The proposed concept may provide a route to more functional wave-based logic circuitry with capabilities far beyond the limits of the traditional transistor-based approach

    New data and the hard pomeron

    Full text link
    New structure-function data are in excellent agreement with the existence of a hard pomeron, with intercept about 1.4. It gives a very economical description of the data. Having fixed 2 parameters from the data for the real-photon cross section σγp\sigma^{\gamma p}, we need just 5 further parameters to fit the data for F2(x,Q2)F_2(x,Q^2) with x0.001x\leq 0.001. The available data range from Q2=0.045Q^2=0.045 to 35 GeV2^2. With guesses consistent with dimensional counting for the xx dependences of our three separate terms, the fit extends well to larger xx and to Q2=5000Q^2=5000 GeV2^2. With no additional parameters, it gives a good description of data for the charm structure function F2c(x,Q2)F_2^c(x,Q^2) from Q2=0Q^2=0 to 130 GeV2^2. The two pomerons also give a good description of both the WW and the tt dependence of γpJ/ψp\gamma p\to J/\psi p.Comment: 11 pages, plain tex, with 10 figures embedded using epsf. (Spurious figure removed.
    corecore