We present a detailed derivation of Fourier's law in a class of stochastic
energy exchange systems that naturally characterize two-dimensional mechanical
systems of locally confined particles in interaction. The stochastic systems
consist of an array of energy variables which can be partially exchanged among
nearest neighbours at variable rates. We provide two independent derivations of
the thermal conductivity and prove this quantity is identical to the frequency
of energy exchanges. The first derivation relies on the diffusion of the
Helfand moment, which is determined solely by static averages. The second
approach relies on a gradient expansion of the probability measure around a
non-equilibrium stationary state. The linear part of the heat current is
determined by local thermal equilibrium distributions which solve a
Boltzmann-like equation. A numerical scheme is presented with computations of
the conductivity along our two methods. The results are in excellent agreement
with our theory.Comment: 19 pages, 5 figures, to appear in Journal of Statistical Mechanics
(JSTAT