741 research outputs found

    Large scale related effects on the determination of plant communities and relationships with environmental variables

    Get PDF
    The influence of scale on the discernment of plant community patterns was examined using vegetation-environment data collected from a subalpine wet meadow in south-coastal British Columbia. Species cover data were recorded in 225, 0.25 m2quadrats systematically located at 5m intervals in a 40 m x 120 m sampling grid. Environmental data consisted of quadrat elevations as well as measured and kriged estimates of five soil variables (carbon content, pH, electrical conductivity, percent sand, and percent clay). Sampling scale was adjusted by aggregating neighbouring quadrats into composite sampling units; analytical scale was altered by varying the intercept level in dendrograms from minimum increase of sum of squares cluster analysis of the vegetation data corresponding to the different sampling scales. The resulting classifications were evaluated for their ability to explain variation in the vegetation data and in the environmental data. The vegetation variation explained by the classifications was highest at the smallest sampling scale indicating that vegetation heterogeneity is fine grained. In contrast, the environmental variation explained was higher for the classifications based on the larger composite sampling units implying a coarser scaling of abiotic conditions within the study area. These results were consistent with the recognition of three main zones along a drainage gradient within the sampling grid. upper mixed-forb, middle heath, and lower sedge. There was also evidence that the orientation of rectangular sampling units parallel to the drainage gradient leads to higher levels of explained variation. This study reaffirms the need for careful consideration of alternatives both in field sampling and analytical phases of vegetation research to ensure that description and interpretation of patterns adequately address study objectives and that vegetation-environment relationships are more completely investigated from a hierarchical perspective

    Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement

    Get PDF
    Background: Whole-exome sequencing has identified the causes of several Mendelian diseases by analyzing multiple unrelated cases, but it is more challenging to resolve the cause of extremely rare and suspected Mendelian diseases from individual families. We identified a family quartet with two children, both affected with a previously unreported disease, characterized by progressive muscular weakness and cardiomyopathy, with normal intelligence. During the course of the study, we identified one additional unrelated patient with a comparable phenotype. Methods: We performed whole-genome sequencing (Complete Genomics platform), whole-exome sequencing (Agilent SureSelect exon capture and Illumina Genome Analyzer II platform), SNP genotyping (Illumina HumanHap550 SNP array) and Sanger sequencing on blood samples, as well as RNA-Seq (Illumina HiSeq platform) on transformed lymphoblastoid cell lines. Results: From whole-genome sequence data, we identified RBCK1, a gene encoding an E3 ubiquitin-protein ligase, as the most likely candidate gene, with two protein-truncating mutations in probands in the first family. However, exome data failed to nominate RBCK1 as a candidate gene, due to poor regional coverage. Sanger sequencing identified a private homozygous splice variant in RBCK1 in the proband in the second family, yet SNP genotyping revealed a 1.2Mb copy-neutral region of homozygosity covering RBCK1. RNA-Seq confirmed aberrant splicing of RBCK1 transcripts, resulting in truncated protein products. Conclusions: While the exact mechanism by which these mutations cause disease is unknown, our study represents an example of how the combined use of whole-genome DNA and RNA sequencing can identify a disease-predisposing gene for a novel and extremely rare Mendelian disease

    Limits to Poisson's ratio in isotropic materials

    Full text link
    A long-standing question is why Poisson's ratio v nearly always exceeds 0.2 for isotropic materials, whereas classical elasticity predicts v to be between -1 to 1/2. We show that the roots of quadratic relations from classical elasticity divide v into three possible ranges: -1 < v <= 0, 0 <= v <= 1/5, and 1/5 <= v < 1/2. Since elastic properties are unique there can be only one valid set of roots, which must be 1/5 <= v < 1/2 for consistency with the behavior of real materials. Materials with Poisson's ratio outside of this range are rare, and tend to be either very hard (e.g., diamond, beryllium) or porous (e.g., auxetic foams); such substances have more complex behavior than can be described by classical elasticity. Thus, classical elasticity is inapplicable whenever v < 1/5, and the use of the equations from classical elasticity for such materials is inappropriate.Comment: Physical Review B, in pres

    Limits to Poisson's ratio in isotropic materials - general result for arbitrary deformation

    Full text link
    The lower bound usually cited for Poisson's ratio {\nu} is -1, derived from the relationship between {\nu} and the bulk and shear moduli. From consideration of the longitudinal and biaxial moduli, we recently determined that the lower bound on {\nu} for isotropic materials is actually 1/5, a value also consistent with experimental measurements on real materials. Herein we generalize this result, first by analyzing expressions for {\nu} in terms of six common elastic constants, and then by considering arbitrary strains. The results corroborate the prior finding that 1/5 <= {\nu} for linear elasticity to be applicable.Comment: 15 pages, 3 figures, 1 tabl

    Aortic valve replacement in a young patient with essential thrombocytosis

    Get PDF
    Essential Thrombocythcythaemia (ET) is an uncommon type of myeloproliferative disorder, characterised by both thrombotic and haemorrhagic diathesis. No clear guidelines exist for the pre- and post-operative management of patients undergoing cardiac surgery in the haematological and surgical literature. This condition has profound implications in patients undergoing cardiac surgery with the use of cardiopulmonary bypass, where heparin is used for anti-coagulation. This dilemma is further compounded in the setting of a young patient undergoing aortic valve replacement (AVR), where insertion of a mechanical prosthesis would be the procedure of choice. This would require life-long anticoagulation with warfarin which can predispose these patients to catastrophic bleeding. Using a tissue valve will subject the patient to multiple redo operations in the patient's lifetime. We report a young patient with ET requiring AVR and discuss the dilemmas surrounding the choice of prosthesis in this patient

    Microscale distribution patterns of terrestrial bryophytes in a subalpine forest: the use of logistic regression as an interpretive tool

    Get PDF
    This study investigated microhabitat relationships of terrestrial bryophytes in a subalpine forest of coastal British Columbia. Substratum affinities were characterized for dominant bryophytes. Logistic regression analysis was used to gain insight into the ecological determinants of fine scale (0.1 m2) bryophyte distribution by examining the predictive relationship between bryophyte species occurrence and localized environmental conditions, as well as the coverage of other bryophytes. The predictive relationships were compared to evaluate the relative importance of environmental factors versus interspecific interactions in structuring bryophyte communities. The results indicate that bryophytes show unique responses in their relationships to environmental conditions and other bryophytes. Positive feedback appears to be an important process among terrestrial bryophytes in subalpine forests

    Automata for true concurrency properties

    Get PDF
    We present an automata-theoretic framework for the model checking of true concurrency properties. These are specified in a fixpoint logic, corresponding to history-preserving bisimilarity, capable of describing events in computations and their dependencies. The models of the logic are event structures or any formalism which can be given a causal semantics, like Petri nets. Given a formula and an event structure satisfying suitable regularity conditions we show how to construct a parity tree automaton whose language is non-empty if and only if the event structure satisfies the formula. The automaton, due to the nature of event structure models, is usually infinite. We discuss how it can be quotiented to an equivalent finite automaton, where emptiness can be checked effectively. In order to show the applicability of the approach, we discuss how it instantiates to finite safe Petri nets. As a proof of concept we provide a model checking tool implementing the technique

    Partial-order Boolean games: informational independence in a logic-based model of strategic interaction

    Get PDF
    As they are conventionally formulated, Boolean games assume that players make their choices in ignorance of the choices being made by other players – they are games of simultaneous moves. For many settings, this is clearly unrealistic. In this paper, we show how Boolean games can be enriched by dependency graphs which explicitly represent the informational dependencies between variables in a game. More precisely, dependency graphs play two roles. First, when we say that variable x depends on variable y, then we mean that when a strategy assigns a value to variable x, it can be informed by the value that has been assigned to y. Second, and as a consequence of the first property, they capture a richer and more plausible model of concurrency than the simultaneous-action model implicit in conventional Boolean games. Dependency graphs implicitly define a partial ordering of the run-time events in a game: if x is dependent on y, then the assignment of a value to y must precede the assignment of a value to x; if x and y are independent, however, then we can say nothing about the ordering of assignments to these variables—the assignments may occur concurrently. We refer to Boolean games with dependency graphs as partial-order Boolean games. After motivating and presenting the partial-order Boolean games model, we explore its properties. We show that while some problems associated with our new games have the same complexity as in conventional Boolean games, for others the complexity blows up dramatically. We also show that the concurrency in partial-order Boolean games can be modelled using a closure-operator semantics, and conclude by considering the relationship of our model to Independence-Friendly (IF) logic
    • …
    corecore