3,308 research outputs found

    Observationally based models of penumbral microjets

    Full text link
    We study the polarization signals and physical parameters of penumbral microjets (PMJs) by using high spatial resolution data taken in the Fe I 630 nm pair, Ca II 854.2 nm and Ca II K lines with the CRISP and CHROMIS instruments at the Swedish 1-m Solar Telescope. We infer their physical parameters, such as physical observables in the photosphere and chromospheric velocity diagnostics, by different methods, including inversions of the observed Stokes profiles with the STiC code. PMJs harbor overall brighter Ca II K line profiles and conspicuous polarization signals in Ca II 854.2 nm, specifically in circular polarization that often shows multiple lobes mainly due to the shape of Stokes I. They usually overlap photospheric regions with sheared magnetic field configuration, suggesting that magnetic reconnections could play an important role in the origin of PMJs. The discrepancy between their low LOS velocities and the high apparent speeds reported on earlier, as well as the existence of different vertical velocity gradients in the chromosphere, indicate that PMJs might not be entirely related to mass motions. Instead, PMJs could be due to perturbation fronts induced by magnetic reconnections occurring in the deep photosphere that propagate through the chromosphere. This reconnection may be associated with current heating that produces temperature enhancements from the temperature minimum region. Furthermore, enhanced collisions with electrons could also increase the coupling to the local conditions at higher layers during the PMJ phase, giving a possible explanation for the enhanced emission in the overall Ca II K profiles emerging from these transients.Comment: 15 pages, 18 figures. Accepted for publication in ApJ. Added references for Section 4.

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot

    Time-resolved spectroscopy of the primary photosynthetic processes of membrane-bound reaction centers from an antenna-deficient mutant of Rhodobacter capsulatus

    Get PDF
    The primary photosynthetic reactions in whole membranes of the antenna-deficient mutant strain U43 (pTXA6–10) of Rhodobacter capsulatus are studied by transient absorption and emission spectroscopy with subpicosecond time resolution. Extensive similarities between the transient absorption data on whole membranes and on isolated reaction centers support the idea that the primary processes in isolated reaction centers are not modified by the isolation procedure

    A three dimensional model of the photosynthetic membranes of Ectothiorhodospira halochloris

    Get PDF
    The three dimensional organization of the complete photosynthetic apparatus of the extremely halophilic, bacteriochlorophyll b containing Ectothiorhodospira halochloris has been elaborated by several techniques of electron microscopy. Essentially all thylakoidal sacs are disc shaped and connected to the cytoplasmic membrane by small membraneous ldquobridgesrdquo. In sum, the lumina of all thylakoids (intrathylakoidal space) form one common periplasmic space. Thin sections confirm a paracrystalline arrangement of the photosynthetic complexes in situ. The ontogenic development of the photosynthetic apparatus is discussed based on a structural model derived from serial thin sections

    Multiscale photosynthetic exciton transfer

    Full text link
    Photosynthetic light harvesting provides a natural blueprint for bioengineered and biomimetic solar energy and light detection technologies. Recent evidence suggests some individual light harvesting protein complexes (LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction centers (RCs) via an interplay between excitonic quantum coherence, resonant protein vibrations, and thermal decoherence. The role of coherence in vivo is unclear however, where excitons are transferred through multi-LHC/RC aggregates over distances typically large compared with intra-LHC scales. Here we assess the possibility of long-range coherent transfer in a simple chromophore network with disordered site and transfer coupling energies. Through renormalization we find that, surprisingly, decoherence is diminished at larger scales, and long-range coherence is facilitated by chromophoric clustering. Conversely, static disorder in the site energies grows with length scale, forcing localization. Our results suggest sustained coherent exciton transfer may be possible over distances large compared with nearest-neighbour (n-n) chromophore separations, at physiological temperatures, in a clustered network with small static disorder. This may support findings suggesting long-range coherence in algal chloroplasts, and provides a framework for engineering large chromophore or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published online by Nature Physics (2012

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure
    corecore