248 research outputs found

    Fuzzy FMECA analysis of radioactive gas recovery system in the SPES experimental facility

    Get PDF
    Selective Production of Exotic Species is an innovative plant for advanced nuclear physic studies. A radioactive beam, generated by using an UCx target-ion source system, is ionized, selected and accelerated for experimental objects. Very high vacuum conditions and appropriate safety systems to storage exhaust gases are required to avoid radiological risk for operators and people. In this paper, Failure Mode, Effects, and Criticality Analysis of a preliminary design of high activity gas recovery system is performed by using a modified Fuzzy Risk Priority Number to rank the most critical components in terms of failures and human errors. Comparisons between fuzzy approach and classic application allow to show that Fuzzy Risk Priority Number is able to enhance the focus of risk assessments and to improve the safety of complex and innovative systems such as those under consideration

    Laboratory implementation of edge illumination X-ray phase-contrast imaging with energy-resolved detectors

    Get PDF
    Edge illumination (EI) X-ray phase-contrast imaging (XPCI) has potential for applications in different fields of research, including materials science, non-destructive industrial testing, small-animal imaging, and medical imaging. One of its main advantages is the compatibility with laboratory equipment, in particular with conventional non-microfocal sources, which makes its exploitation in normal research laboratories possible. In this work, we demonstrate that the signal in laboratory implementations of EI can be correctly described with the use of the simplified geometrical optics. Besides enabling the derivation of simple expressions for the sensitivity and spatial resolution of a given EI setup, this model also highlights the EI’s achromaticity. With the aim of improving image quality, as well as to take advantage of the fact that all energies in the spectrum contribute to the image contrast, we carried out EI acquisitions using a photon-counting energy-resolved detector. The obtained results demonstrate that this approach has great potential for future laboratory implementations of EI. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Energy characterization of Pixirad-1 photon counting detector system

    Get PDF
    This work is focused on the characterization of the Pixirad-1 detector system from the spectroscopic point of view. An energy calibration has been carried out using different X-ray sources such as fluorescence lines, synchrotron radiation and radioactive elements. The energy resolution has been measured as function of the energy and the results have been compared with theoretical estimation. Last, the charge sharing fraction has been evaluated by exploiting the monochromatic energy of the Elettra synchrotron beam

    The imaging properties of the Gas Pixel Detector as a focal plane polarimeter

    Full text link
    X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut f\"ur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPE configuration, discussing also possible improvements by coupling the detector with advanced optics, having finer angular resolution and larger effective area, to study with more details extended objects.Comment: Accepted for publication in The Astrophysical Journal Supplemen

    Economic impact of remote monitoring on ordinary follow-up of implantable cardioverter defibrillators as compared with conventional in-hospital visits: a single-center prospective and randomized study

    Get PDF
    Few data are available on actual follow-up costs of remote monitoring (RM) of implantable defibrillators (ICD). Our study aimed at assessing current direct costs of 1-year ICD follow-up based on RM compared with conventional quarterly in-hospital follow-ups. Methods and results Patients (N=233) with indications for ICD were consecutively recruited and randomized at implant to be followed up for 1 year with standard quarterly inhospital visits or by RM with one in-hospital visit at 12 months, unless additional in-hospital visits were required due to specific patient conditions or RM alarms. Costs were calculated distinguishing between provider and patient costs, excluding RM device and service cost. The frequency of scheduled in-hospital visits was lower in the RM group than in the control arm. Follow-up required 47 min per patient/year in the RM arm versus 86 min in the control arm (p=0.03) for involved physicians, generating cost estimates for the provider of USD 45 and USD 83 per patient/- year, respectively. Costs for nurses were comparable. Overall, the costs associated with RM and standard follow-up were USD 103±27 and 154±21 per patient/year, respectively (p=0.01). RM was cost-saving for the patients: USD 97±121 per patient/year in the RM group versus 287± 160 per patient/year (p=0.0001). Conclusion The time spent by the hospital staff was significantly reduced in the RM group. If the costs for the device and service are not charged to patients or the provider, patients could save about USD 190 per patient/year while the hospital could save USD 51 per patient/year

    RIP1-HAT1-SirT complex identification and targeting in treatment and prevention of cancer

    Get PDF
    Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis, and necroptosis has been attributed to RIP1/3 complexes.Experimental Design: We have investigated the role of RIP1 and the effects of MC2494 in cell death induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, enzymatic assays, transfections, mutagenesis, and in vivo studies with different mice models.Results: Here, we show that RIP1 is highly expressed in cancer, and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex. Mass spectrometry identified five acetylations in the kinase and death domain of RIP1. The novel characterized pan-SIRT inhibitor, MC2494, increases RIP1 acetylation at two additional sites in the death domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death, suggesting a role for acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumor-selective potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. Mechanistically, MC2494 induces bona fide tumor-restricted acetylated RIP1/caspase-8-mediated apoptosis. Excitingly, MC2494 displays tumor-preventive activity by blocking 7,12-dimethylbenz(α)anthracene-induced mammary gland hyperproliferation in vivoConclusions: These preventive features might prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during follow-up phases and in cases of established cancer predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel paradigm in cancer treatment and prevention

    Treatment of wounds colonized by multidrug resistant organisms in immune-compromised patients: a retrospective case series.

    Get PDF
    Immune-compromised patients incur a high risk of surgical wound dehiscence and colonization by multidrug resistant organisms. Common treatment has been debridement and spontaneous secondary healing.All immune-compromised patients referred to our Institution between March 1, 2010 and November 30, 2011 for dehiscent abdominal wounds growing multidrug resistant organisms were treated by serial wound debridements and negative pressure dressing. They were primarily closed, despite positive microbiological cultures, when clinical appearance was satisfactory.Nine patients were treated by direct wound closure, five had been treated previously by secondary intention healing.According to our results, fast healing can be safely obtained by closure of a clinically healthy wound, despite growth of multidrug resistant organisms, even in immune-compromised patients

    Development and Multicenter Validation of a Novel Immune-Inflammation-Based Nomogram to Predict Survival in Western Resectable Gastric and Gastroesophageal Junction Adenocarcinoma (GEA): The NOMOGAST

    Get PDF
    Background. More than 50% of operable GEA relapse after curative-intent resection. We aimed at externally validating a nomogram to enable a more accurate estimate of individualized risk in resected GEA. Methods. Medical records of a training cohort (TC) and a validation cohort (VC) of patients undergoing radical surgery for c/uT2-T4 and/or node-positive GEA were retrieved, and potentially interesting variables were collected. Cox proportional hazards in univariate and multivariate regressions were used to assess the effects of the prognostic factors on OS. A graphical nomogram was constructed using R software’s package Regression Modeling Strategies (ver. 5.0-1). The performance of the prognostic model was evaluated and validated. Results. The TC and VC consisted of 185 and 151 patients. ECOG:PS > 0 (p < 0.001), angioinvasion (p < 0.001), log (Neutrophil/Lymphocyte ratio) (p < 0.001), and nodal status (p = 0.016) were independent prognostic values in the TC. They were used for the construction of a nomogram estimating 3- and 5-year OS. The discriminatory ability of the model was evaluated with the c-Harrell index. A 3-tier scoring system was developed through a linear predictor grouped by 25 and 75 percentiles, strengthening the model’s good discrimination (p < 0.001). A calibration plot demonstrated a concordance between the predicted and actual survival in the TC and VC. A decision curve analysis was plotted that depicted the nomogram’s clinical utility. Conclusions. We externally validated a prognostic nomogram to predict OS in a joint independent cohort of resectable GEA; the NOMOGAST could represent a valuable tool in assisting decision-making. This tool incorporates readily available and inexpensive patient and disease characteristics as well as immune-inflammatory determinants. It is accurate, generalizable, and clinically effectivex
    • …
    corecore