4,013 research outputs found

    Surface drilling technologies for Mars

    Get PDF
    Rock drilling and coring conceptual designs for the surface activities associated with a manned Mars mission are proposed. Straightforward extensions of equipment and procedures used on Earth are envisioned for the sample coring and shallow high explosive shot holes needed for tunneling and seismic surveying. A novel rocket exhaust jet piercing method is proposed for very rapid drilling of shot holes required for explosive excavation of emergency radiation shelters. Summaries of estimated equipment masses and power requirements are provided, and the indicated rotary coring rigs are scaled from terrestrial equipment and use compressed CO2 from the Martian atmosphere for core bit cooling and cuttings removal. A mass of 120 kg and power of 3 kW(e) are estimated for a 10 m depth capability. A 100 m depth capacity core rig requires about 1150 kg and 32 km(e). The rocket exhaust jet equipment devised for shallow (3m) explosive emplacement shot holes requires no surface power beyond an electrical ignition system, and might have a 15 kg mass

    Density Matrix Renormalization for Model Reduction in Nonlinear Dynamics

    Full text link
    We present a novel approach for model reduction of nonlinear dynamical systems based on proper orthogonal decomposition (POD). Our method, derived from Density Matrix Renormalization Group (DMRG), provides a significant reduction in computational effort for the calculation of the reduced system, compared to a POD. The efficiency of the algorithm is tested on the one dimensional Burgers equations and a one dimensional equation of the Fisher type as nonlinear model systems.Comment: 12 pages, 12 figure

    Geomagnetic paleointensity in historical pyroclastic density currents: Testing the effects of emplacement temperature and postemplacement alteration

    Get PDF
    Thellier-type paleointensity experiments were conducted on welded ash matrix or pumice from the 1912 Novarupta (NV) and 1980 Mt. St. Helens (MSH) pyroclastic density currents (PDCs) with the intention of evaluating their suitability for geomagnetic paleointensity studies. PDCs are common worldwide, but can have complicated thermal and alteration histories. We attempt to address the role that emplacement temperature and postemplacement hydrothermal alteration may play in nonideal paleointensity behavior of PDCs. Results demonstrate two types of nonideal behavior: unstable remanence in multidomain (MD) titanomagnetite, and nonideal behavior linked to fumarolic and vapor phase alteration. Emplacement temperature indirectly influences MSH results by controlling the fraction of homogenous MD versus oxyexsolved pseudo-single domain titanomagnetite. NV samples are more directly influenced by vapor phase alteration. The majority of NV samples show distinct two-slope behavior in the natural remanent magnetization—partial thermal remanent magnetization plots. We interpret this to arise from a (thermo)chemical remanent magnetization associated with vapor phase alteration, and samples with high water content (\u3e0.75% loss on ignition) generate paleointensities that deviate most strongly from the true value. We find that PDCs can be productively used for paleointensity, but that—as with all paleointensity studies—care should be taken in identifying potential postemplacement alteration below the Curie temperature, and that large, welded flows may be more alteration-prone. One advantage in using PDCs is that they typically have greater areal (spatial) exposure than a basalt flow, allowing for more extensive sampling and better assessment of errors and uncertainty

    Deaf academics' perceptions of 'trust' in relationships with signed language interpreters

    Get PDF
    The concept of 'trust' is frequently used when discussing the working relationship between deaf signers and signed language interpreters, with interpreters often claiming that trust is a prerequisite to a successful interaction. This paper presents original data from an in-depth research project which used collaborative autoethnography to gather the experiences of seven deaf academics who work regularly with British Sign Language (BSL) interpreters, who interpret between BSL and spoken English, to analyse the concept of 'trust' in our working relations with BSL interpreters. We found that 'trust' is not a useful or productive concept for our interpersonal and professional aims. Instead, we outline multiple ways in which deaf academics can assess and evaluate interpreters' values, competencies, and performance without relying on 'trust'. Our findings provide an important, powerful and under-explored perspective on the working relations between deaf academics and interpreters. We suggest these findings can be applied by deaf BSL signers and interpreters in contexts beyond academia, and constitute an important contribution to the literature on interpreting

    Terahertz generation by optical rectification in uniaxial birefringent crystals

    Get PDF
    The angular dependence of terahertz (THz) emission from birefringent crystals can differ significantly from that of cubic crystals. Here we consider optical rectification in uniaxial birefringent materials, such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP_2 and compared to (zincblende) GaP. Although the crystals share the same nonzero second-order tensor elements, the birefringence in chalcopyrite crystals cause the pump pulse polarization to evolve as it propagates through the crystal, resulting in a drastically different angular dependence in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut chalcopyrite crystals and predicts more efficient conversion for the {114} crystal cut over the {012}- and {110}-cuts.Comment: 6 pages, 3 figure, online journal articl

    The Oxalate-Carbonate Pathway of Brosimum alicastrum Sw.; Moraceae

    Get PDF
    The oxalate - carbonate pathway (OCP) is a biogeochemical process involving plants, fungi and bacteria that transforms atmospheric CO 2 into CaCO 3 . However, until now the process has only been studied in acidic soil environments adjacent to species that have limited food - production potential . This study used an experimental approach to evaluate an OCP associated with Brosimum alicastrum , a Neotropical species that produces significant quantites of food ( ca. 70 – 200 kg - seeds yr −1 ), in the calcareous soils of Haiti and Mexico. Enzymatic analysis of various tissues from B. alicastrum indicated that the species produces significant amounts of calcium oxalate (5.97 % D.W.) at all sample sites. Oxalotroph y , the bacterial metabolism of calcium oxalate that leads to the precipitation of CaCO 3 , was also confirmed with microbiological analyses in both countries. T he typical localised alkalinisation and identification of secondary carbonate associated with the OCP was obscured at most sample sites by h igh concentrations of lithogenic carbonate and total cal cium (>7 g kg −1 ), except at Ma Rouge, Haiti. Soils adjacent to subjects in Ma Rouge presented a localised increase in CaCO 3 concentration (5.9 %) and pH (0.63) . F indings in Ma Rouge , coupled with observations of root - like secondary carbonate deposits in Me xico, strongly impl y that the OCP can also occur in calcareous soils. Th us, this study confirms that the OCP acts in calcareous soils, adjacent to species with significant food - production potential, and could play a fundamental and un - accounted role in the global calcium - carbon coupled cycl

    Broadband Terahertz Pulse Emission from ZnGeP\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    Optical rectification is demonstrated in (110)-cut ZnGeP2 (ZGP) providing broadband terahertz (THz) generation. The source is compared to both GaP and GaAs over a wavelength range of 1150 nm to 1600 nm and peak intensity range of 0.5 GW/cm2 to 40 GW/cm2. ZGP peak-to-peak field amplitude is larger than in the other materials due to either lower nonlinear absorption or larger second order nonlinearity. This material is well suited for broadband THz generation across a wide range of infrared excitation wavelengths

    Correcting for T1 bias in Magnetization Transfer Saturation (MTsat) Maps Using Sparse-MP2RAGE

    Full text link
    Purpose: Magnetization transfer saturation (MTsat) mapping is commonly used to examine the macromolecular content of brain tissue. This study compared variable flip angle (VFA) T1 mapping against compressed sensing (cs)MP2RAGE T1 mapping for accelerating MTsat imaging. Methods: VFA, MP2RAGE and csMP2RAGE were compared against inversion recovery (IR) T1 in a phantom at 3 Tesla. The same 1 mm VFA, MP2RAGE and csMP2RAGE protocols were acquired in four healthy subjects to compare the resulting T1 and MTsat. Bloch-McConnell simulations were used to investigate differences between the phantom and in vivo T1 results. Finally, ten healthy controls were imaged twice with the csMP2RAGE MTsat protocol to quantify repeatability. Results: The MP2RAGE and csMP2RAGE protocols were 13.7% and 32.4% faster than the VFA protocol, respectively. All approaches provided accurate T1 values (<5% difference) in the phantom, but the accuracy of the T1 times was more impacted by differences in T2 for VFA than for MP2RAGE. In vivo, VFA generated longer T1 times than MP2RAGE and csMP2RAGE. Simulations suggest that the bias in the T1 values between VFA and IR-based approaches (MP2RAGE and IR) could be explained by the MT-effects from the inversion pulse. In the test-retest experiment, we found that the csMP2RAGE has a minimum detectable change of 3% for T1 mapping and 7.9% for MTsat imaging. Conclusions: We demonstrated that csMP2RAGE can be used in place of VFA T1 mapping in an MTsat protocol. Furthermore, a shorter scan time and high repeatability can be achieved using the csMP2RAGE sequence.Comment: 23 pages, 7 figures, 2 table
    • …
    corecore