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RESEARCH ARTICLE
10.1002/2015GC005910

Geomagnetic paleointensity in historical pyroclastic density
currents: Testing the effects of emplacement temperature and
postemplacement alteration
Julie A. Bowles1, Jeffrey S. Gee2, Mike J. Jackson3, and Margaret S. Avery2

1Department of Geosciences, University of Wisconsin – Milwaukee, Milwaukee, Wisconsin, USA, 2Scripps Institution of
Oceanography, University of California, San Diego, California, USA, 3Institute for Rock Magnetism, Winchell School of Earth
Sciences, University of Minnesota, Minneapolis, Minnesota, USA

Abstract Thellier-type paleointensity experiments were conducted on welded ash matrix or pumice
from the 1912 Novarupta (NV) and 1980 Mt. St. Helens (MSH) pyroclastic density currents (PDCs) with the
intention of evaluating their suitability for geomagnetic paleointensity studies. PDCs are common world-
wide, but can have complicated thermal and alteration histories. We attempt to address the role that
emplacement temperature and postemplacement hydrothermal alteration may play in nonideal paleointen-
sity behavior of PDCs. Results demonstrate two types of nonideal behavior: unstable remanence in multido-
main (MD) titanomagnetite, and nonideal behavior linked to fumarolic and vapor phase alteration.
Emplacement temperature indirectly influences MSH results by controlling the fraction of homogenous MD
versus oxyexsolved pseudo-single domain titanomagnetite. NV samples are more directly influenced by
vapor phase alteration. The majority of NV samples show distinct two-slope behavior in the natural rema-
nent magnetization—partial thermal remanent magnetization plots. We interpret this to arise from a
(thermo)chemical remanent magnetization associated with vapor phase alteration, and samples with high
water content (>0.75% loss on ignition) generate paleointensities that deviate most strongly from the true
value. We find that PDCs can be productively used for paleointensity, but that—as with all paleointensity
studies—care should be taken in identifying potential postemplacement alteration below the Curie temper-
ature, and that large, welded flows may be more alteration-prone. One advantage in using PDCs is that they
typically have greater areal (spatial) exposure than a basalt flow, allowing for more extensive sampling and
better assessment of errors and uncertainty.

1. Introduction

One of the challenges in determining past variations in the absolute intensity of the geomagnetic field lies in
finding materials that have ideal, single-domain (SD) particles that are also resistant to alteration on heating.
True SD particles are rare in nature. Lava flows, which cool relatively quickly, are frequently used in paleoin-
tensity studies because they typically contain pseudo-single-domain (PSD) sized particles, often viewed as a
reasonable compromise. Many paleointensity studies have been carried out on basaltic lava flows [e.g., Coe,
1967b; Kono, 1974; Dunlop and Hale, 1976; Coe et al., 1978; Senanayake et al., 1982; Roperch et al., 1988; Pr�evot
et al., 1990; Goguitchaichvili et al., 2004; Yamamoto et al., 2003; Biggin et al., 2009; Camps et al., 2011; Kulakov
et al., 2013], with variable success. In addition to nonideal grain size, some flows are particularly prone to
alteration during paleointensity experiments, often either by oxidation and/or inversion of (titano-)maghe-
mite to magnetite or hematite [e.g., €Ozdemir, 1987; Draeger et al., 2006; Herrero-Bervera and Valet, 2009].
Restricting paleointensity studies to basalts also restricts us in space and time to localities with basaltic volca-
nism. It would therefore be advantageous if paleointensity estimates could be derived from a wider variety
of eruptive units, including more silicic units, which tend to erupt explosively often forming ash and/or
pumice-rich pyroclastic density currents (PDCs).

PDCs (many with high quality 40Ar/39Ar ages) are common worldwide and particularly in the southwestern
U.S. Thus, if absolute paleointensities can be determined from ash flows, it may be possible to compile a
more comprehensive database of past field intensity fluctuations. It has been demonstrated that fine-grained
SP-SD magnetite can exist in the glassy matrix or vitrophyre glass of ash flow tuffs [Geissman et al., 1983;
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Schlinger et al., 1988a, 1988b, 1991; Till et al., 2011], and the glass may at least partially shield the magnetite
from alteration after emplacement and during laboratory heating. These potential advantages make them
attractive targets for paleointensity studies, but PDCs can have complicated thermal and alteration histories,
leaving the nature of magnetic remanence in these flows uncertain.

The postemplacement history of PDCs controls two important aspects of remanence acquisition. First, the
primary magnetic mineralogy of tuffs may be significantly changed during postemplacement cooling and
alteration, particularly associated with vapor phase alteration. For example, many ash flows contain phenoc-
rysts of (titano)magnetite that may be oxidized to (titano)maghemite or hematite [e.g., Rosenbaum, 1993;
Schlinger et al., 1991] or that may experience oxyexsolution [Reynolds, 1977]. In addition, secondary, fine-
grained (SP-SD) magnetite may be produced during slow cooling [Geissman et al., 1983; Schlinger et al.,
1988a, 1988b, 1991; Till et al., 2011], particularly in welded flows. Second, the cooling history determines
whether magnetic particles will acquire a total thermoremanent magnetization (TRM), a partial thermore-
manence (pTRM), a chemical remanence (CRM), or some combination of thermochemical remanence
(TCRM).

Compared to basaltic flows, paleointensity has not been extensively tested in pyroclastic flows, and results
have been mixed. The first reported paleointensity attempt on welded ash flow tuffs [Reynolds, 1977]
involved Thellier-type experiments on six specimens representing three different welded tuffs (0.64–2.08
Ma) [Lanphere et al., 2002; Rivera et al., 2014; Singer et al., 2014] of the Yellowstone Group in the American
West. Tanaka et al. [1994] and Takai et al. [2002] conducted Thellier-type paleointensity experiments on
14–45 ka pyroclastic flows on Hokkaido, Japan, although it is not specified what type of material was
sampled from the flows. Roughly, one half to two thirds of the sites were interpreted as successful,
although many of the NRM-pTRM (Arai) plots showed two-slope behavior, and the authors interpreted
only the high-temperature slope. Schnepp [1995] studied �400 ka nonwelded, zeolitized tuffs from the
East Eifel volcanic field (Germany), deposited at �5008C. Most samples strongly altered at T> 3008C, and in
this instance interpretation was limited to the low-temperature fraction. Although results were internally
consistent, the author considered the results to be unreliable because the samples were strongly viscous.
Thellier-type [Takai et al., 2002] and Shaw-type [Mochizuki et al., 2013] tests were conducted on 90–270 ka
welded tuffs and pyroclastic flow deposits from Kyushu, Japan, and the two methods were in general
agreement. Shaw-type experiments on 5–500 ka pyroclastic deposits from Unzen volcano, Japan, [Yama-
moto et al., 2010] yielded six sites with internally consistent results and another four with more variable
results. Perrin et al. [2013] worked with 20.4–31.0 Ma rhyolitic ignimbrites, and in this case Thellier-type
paleointensity experiments produced results of high technical quality, but with no internal consistency.
Combined with the presence of maghemite and hematite, the authors concluded that these results were
unreliable and that hydrothermal alteration had affected the magnetization. Roperch et al. [2014] sampled
several locations where juvenile scoria was incorporated in PDCs. They found that the SD to PSD-sized
grains found in the scoria typically resulted in Thellier-type paleointensity estimates of high technical qual-
ity. One historical flow was sampled, and the anisotropy and cooling-rate corrected result was in approxi-
mate agreement with the expected field. Finally, Paterson et al. [2010b] conducted Thellier-type
experiments on lithic clasts incorporated into flows from Mt. St. Helens (erupted 1980), Lascar (erupted
1993), and Vesuvius (erupted 472 A.D.). They determined that the lithic clasts have promise for paleointen-
sity studies, but can still suffer from problems common to lava flows, including multidomain effects.

In all of the studies, the number of specimens analyzed per cooling unit is relatively low in terms of assess-
ing overall flow-wide variability. With the exception of Takai et al. [2002] and Paterson et al. [2010b] where
up to 27 ‘‘successful’’ specimens (as defined by the authors) per cooling unit are identified, 10 or fewer ‘‘suc-
cessful’’ results are reported for each cooling unit. Given the potential spatial variability in cooling and
hydrothermal activity, a large-scale evaluation of how magnetic mineralogy, cooling history, emplacement
temperature, and alteration may control paleointensity is in order.

By contrast, preliminary work from the �0.76 Myr Bishop Tuff [Gee et al., 2010] sampled at multiple locations
in the cooling unit, as well as in variably welded and variably altered zones. Thellier-type paleointensity
experiments were conducted on 89 specimens. Forty-six were interpreted, and the results were internally
consistent with moderately high technical quality. Although promising, the authors noted that the samples
carried both magnetite and (titano)maghemite and that a significant fraction of the remanence unblocked
at T> 5808C. The high-temperature (T> 5808C) data typically resulted in a higher paleointensity, and this
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component was interpreted as a CRM held by the maghemite and derived from high-temperature vapor-
phase alteration. Thus, only the low-temperature slopes were used in interpretation. More recent work on
the Bishop tuff has resulted in less internally consistent results, demonstrating the impact non-TRM rema-
nence may have on paleointensity estimates if misinterpreted as TRM [Avery et al., 2012].

Because of the mixed results derived from older PDCs, we undertook this study on two historical pyroclastic
flows where field strength is known. This allows us to test potential nonideal behavior arising from variations
in emplacement temperature or degree of postemplacement hydrothermal alteration, as well as magnetic
mineralogy. In this study we explicitly avoid lithic fragments, focusing instead on the relatively glassy pumice
or welded ash matrix, in order to specifically test the fidelity of these glassy materials. To our knowledge,
these are the only reported paleointensity results on historical PDCs not derived from lithic fragments.

1.1. Geologic Settings
1.1.1. Novarupta Eruption, 1912, Valley of Ten Thousand Smokes
The 1912 Novarupta (NV) eruption in southern Alaska (Figure 1b) deposited approximately 11 km3 of ash
flows over a 60 h period [Fierstein and Wilson, 2005; Hildreth, 1987; Hildreth and Fierstein, 2000]. The flows

Figure 1. Maps of study areas. (a) Overview map showing locations of Novarupta (NV) and Mt. St. Helens MSH. (b) Novarupta sampling locations. Pink shaded area denotes extent of the
all rhyolite ignimbrite that formed the first phase of the eruption. Blue shaded area represents successive phases with increasing amounts of andesite and dacite. Sampling locations are
all in the more andesitic and dacitic flows. Flow boundaries and vent location (heavy black line) from Fierstein and Wilson [2005]. (c) Mt. St. Helens sampling locations. Pyroclastic flow
units of the 1980 eruptive sequence [Kuntz et al., 1990] denoted by colored shading.
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were confined to a valley that narrows northward away from the vent, and due to extensive fumarolic activ-
ity the valley now bears the name Valley of Ten Thousand Smokes (VTTS). The initial flows were rhyolitic
with subsequent eruptions having increasing proportions of andesitic and dacitic material [Fierstein and
Wilson, 2005]. Titanomagnetite is present as phenocrysts in pumice of all compositions and as inclusions in
pyroxene in the intermediate rocks [Hildreth, 1983]. The valley-filling outflow sheets are nonwelded in the
lower valley but increasingly indurated nearer the vent, where flow thickness is >170 m [Kienle, 1991].
Fumarole temperatures as high as 6458C were measured at �3 km from the vent in 1919 [Zies, 1924], pro-
viding a minimum emplacement temperature for near-vent deposits. Although the temperature of most
fumaroles had decreased to �308C by the 1980s, discovery of a moderate temperature vent in 1987 pro-
vides evidence for a still hot (�2008C) zone at depth [Hogeweg et al., 2005].

Based on oxygen isotope data of both feldspar phenocrysts and groundmass, the VTTS tuff has experienced
a two-stage fumarolic history [Holt and Taylor, 2001]: relatively focused short-lived (10–15 years), high-
temperature (>4508C) vigorous fumarolic activity followed by more widespread long term (possibly con-
tinuing to present day) low-temperature (<1508C) vapor phase venting. The effects of the high-
temperature stage are localized, and 18O/16O evidence for interaction with high-temperature meteoric
water is found up to only a few centimeters to a few meters from fumarolic fissures [Holt and Taylor, 2001].
There is typically a strong zonation from leached white, to pink and unaltered grey tuff away from the con-
duit over the scale of centimeters to meters. Chemical alteration associated with the high-temperature
phase includes a leaching of iron that persists up to several tens of centimeters away from the fissure
[Papike et al., 1991].
1.1.2. Mt. St. Helens Eruptions, 1980
The 1980 eruptions of Mt. St. Helens began on 18 May with an earthquake-triggered collapse of the inflated
north flank of the volcano [Christiansen and Peterson, 1981; Rosenbaum and Waitt, 1981]. The rapid unload-
ing triggered a series of northward-directed hydrothermal steam blasts, followed by a dacitic eruption
which produced a Plinian ash column and deposited voluminous pumiceous ash flows on the north slope.
Subsequent eruptions on 25 May, 12 June, 22 July, 7 August, and 17 October were smaller in scale but each
left significant deposits of nonwelded dacitic pumice and ash [Christiansen and Peterson, 1981].

On eruption, the turbulent pyroclastic flows cooled in transit by entrainment of air and of previously depos-
ited material eroded by the flows, especially on the higher portions of the north flank of the volcano. Far-
ther downslope on the ‘‘pumice plain,’’ deposition dominated over erosion, and flow units are typically a
few meters in thickness [Rowley et al., 1981]. Emplacement temperatures were estimated by temperature-
depth profiles measured days to months after most eruptions [Banks and Hoblitt, 1996]. In general, emplace-
ment temperatures were lowest for the 18 May pyroclastic flow (300–4208C), increasing for the later events
to up to �8508C on 17 October. Emplacement temperatures generally were highest near the eruptive
source, decreasing by about 2008C over the first few hundred meters, and thereafter much more slowly
with distance [Banks and Hoblitt, 1996].

2. Methods

2.1. Field Sampling
One-inch diameter oriented cores were sampled at both localities with a battery-powered drill. The Novar-
upta samples (Figure 1b) were all taken from the upper, more andesite-rich and dacite-rich flows, the upper
30–40 m of which are exposed in steep-sided gorges along the River Lethe and Knife Creek. Samples were
dominantly poorly to moderately welded ash flow, frequently with small (mm to cm-sized) pumice and
lithic fragments distributed in the ash matrix. At one site (Site 4), samples were collected horizontally across
two fossil fumarole fissures that showed visible leaching up to �6 cm on either side of the fissure (discussed
below). At Mt. St. Helens (Figure 1c), cores were drilled from large (10–50 cm diameter) pumice blocks con-
tained in the ash matrix. In a few cases where the blocks were too small to core, they were taken as oriented
block samples. At site 2, lithic fragments 10–20 cm in diameter were also sampled, and thermal demagnet-
ization of these samples was used to estimate emplacement temperature [e.g., Hoblitt and Kellogg, 1979;
Paterson et al., 2010a]. At both localities, efforts were made to sample as widely as possible throughout the
flows, both in areal extent (Figure 1) and depth in flow. At NV, samples were typically collected vertically
over �1.5–5 m of section at each site, while the thinner flows at MSH were typically sampled over< 1.5 m.
Site locations are given in supporting information Table S1.
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2.2. Magnetic Experiments
Bulk room-temperature susceptibility was measured on a Magnon Variable Frequency Susceptibility Meter.
Temperature dependent susceptibility v(T) (up to 6008C or 7008C) was measured on a Kappabridge KLY-2
with CS-2 furnace or MFK1-FA with CS-4 furnace, under air (MSH) or flowing Ar (NV) atmosphere. All meas-
urements were made at the Institute for Rock Magnetism (IRM) at the University of Minnesota with the
exception of the v(T) measurements made on the MFK1 which were conducted at the University of Wiscon-
sin – Milwaukee (UWM). Curie temperatures were estimated by finding the (negative) peak in the first deriv-
ative of the v(T) data.

Magnetic hysteresis was measured at the IRM on a Princeton Measurements Corporation vibrating sample
magnetometer in fields up to 1 T, and hysteresis data were processed as in Jackson and Solheid [2010]. To
discriminate hysteresis properties of magmatic phenocrysts from possible glass-hosted magnetite, heavy
liquids were used to separate several specimens from each locality (NV and MSH) into low-density and
high-density fractions. Heavy liquids of 2450 kg m23 (NV) or 2420 kg m23 (MSH) were used in the separa-
tion process described in Lagroix et al. [2004].

A subset of specimens from each locality was subjected to further analysis in the form of the Lowrie three-
axis isothermal remanent magnetization (IRM) experiment [Lowrie, 1990]. A saturation IRM was acquired in
steps, with a maximum applied field of 2.5 T. This saturation IRM was overprinted by IRMs in fields of 0.4
and 0.1 T, applied in orthogonal directions in order to separate the high-coercivity, intermediate-coercivity,
and low-coercivity spectra. The samples were then thermally demagnetized in air to provide information on
the blocking temperature spectra of the various coercivity fractions. These experiments were performed at
the Scripps (SIO) Paleomagnetic Lab.

Stepwise thermal demagnetization (up to 6008C or 6108C) of the NRM in air was carried out on a subset of
oriented specimens from each locality. Alternating field (AF) demagnetization was carried out on a subset
of oriented specimens from Novarupta only. MSH thermal demagnetization and AF demagnetization of NV
samples were conducted at the IRM, while thermal demagnetization of NV samples was conducted at SIO.

Thellier-type paleointensity experiments [Thellier and Thellier, 1959] were conducted in air at SIO on unor-
iented specimens in 258C steps between 1008C and 6008C or 6508C, using a laboratory field of 54 lT or 40
lT. We used the IZZI (In field – Zero field, Zero field – In field) protocol [Tauxe and Staudigel, 2004; Yu et al.,
2004], which alternates the order in which the in-field and zero-field treatments are applied in order to
highlight behavior arising from nonreciprocity of partial thermal remanent magnetization (pTRM). pTRM
checks [Coe, 1967a] were carried out on alternate temperature steps.

Finally, selected specimens from Novarupta were subjected to viscosity experiments modeled after Pr�evot
[1981]. See supporting information text for additional information.

2.3. Loss on Ignition (LOI)
Loss on ignition was performed on a subset of NV specimens to test the effects of sample hydration on
paleointensity. Samples were powdered, dried overnight at 1208C, and then heated at 10508C for 15 min.
Mass loss during the 10508C heating is assumed to be water.

3. Results

3.1. Magnetic Mineralogy
For both localities, the v(T) data are mostly reversible, meaning that starting and ending room-temperature
susceptibilities are nearly the same (Figure 2). Notable exceptions are found in NV specimens taken from
visibly altered fumarolic zones (e.g., Figures 2c and 2d). Curie temperatures (Tc) are consistent with a Ti-rich
titanomagnetite (Tc ranging between approximately 3508C and 5008C) and a Ti-poor magnetite (Tc> 5258C).
Reflected light microscopy and electron microprobe data [Bowles et al., 2013; Jackson and Bowles, 2014]
show that the Ti-rich phase is optically homogeneous, with moderate amounts of Mg-substitution and Al-
substitution, while the Ti-poor phase has ilmenite lamellae characteristic of high-temperature oxidation
exsolution. Both phases are present as phenocrysts up to �200 lm diameter.

The homogenous titanomagnetite grains frequently have Curie temperatures that are higher measured on
warming compared to those measured on cooling. This discrepancy has been interpreted as arising from
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cation reordering in the crystal structure, as opposed to chemical alteration [Bowles et al., 2013; Jackson and
Bowles, 2014], and means that the Curie temperature of many of our samples is strongly dependent on ther-
mal history. The inferred cation reordering process is time-dependent and temperature-dependent, and the
temperature at which reordering begins to take place on laboratory time scales is approximately 3008C. This
phenomenon will play an important role in our discussion of the paleointensity results below.

Most NV samples have at least two Curie temperatures, representing homogenous and exsolved titano-
magnetite in variable proportions. Three (Figure 2c) or four Curie temperatures are not uncommon, and
in some cases samples have a broad zone of continuous magnetization loss suggesting considerable com-
positional variations (Figure 2b). In most cases all but the highest Tc exhibit the irreversible behavior
described above that we attribute to cation reordering in the titanomagnetite. Two measured specimens
showed evidence for a phase that orders at T< 758C (e.g., Figure 2d), consistent with high-Ti titanomag-
netite or titanohematite or possibly goethite. Both of these specimens were within visibly altered zones of
focused hydrothermal activity. Most MSH samples also have both a low-Ti and a high-Ti phase, in variable
proportions (Figures 2e–2h). Samples from Sites 2 and 8 are dominated by the high-Ti (low Tc) phase (Fig-
ure 2e), while Site 3 is dominated by the low-Ti (high-Tc) phase (Figure 2f). Samples from sites 7, 11, and
12 are variable in their thermomagnetic behavior, with many samples having three or more Curie
temperatures.

Thermal demagnetization of 3-axis IRM (supporting information Figure S1) in NV samples shows that most
are fully demagnetized by 5808C, with the exception of two specimens with a maximum unblocking tem-
perature of �6208C in the low-coercivity fraction (supporting information Figure S1c), which may be due to
maghemite. The low-coercivity (� 0.4 T) component dominates in all samples except two from fumarolic fis-
sures which have a slightly greater contribution from the high-coercivity component (supporting informa-
tion Figure S1a). MSH specimens are almost all dominated by a low-coercivity component that unblocks
between 4008C and 6008C.

Hysteresis results from both localities are consistent with pseudo-single-domain (PSD) sized particles.
(Figure 3; see supporting information Figure S2, e.g., loops.) The exceptions are MSH Sites 2, 5, and 8 which
are dominated by the homogeneous (nonexsolved) titanomagnetites and are closer to a multidomain (MD)
endmember (Figure 3a). The PSD grain size of these relatively small pyroclastic flows is in contrast to the
single-domain (SD) to superparamagnetic (SP) grain size found in the larger, more densely welded rhyolitic
Bishop Tuff [Gee et al., 2010] and Tiva Canyon Tuff [Till et al., 2011] (Figure 3c).

Although the magnetic properties of the bulk NV and MSH samples are dominated by the relatively coarse phe-
nocryst oxides, the low-density (glass-rich) NV separate is characterized by a smaller magnetic grain size

Figure 2. Thermomagnetic data from representative specimens. Solid red line measured on warming. Dashed blue line measured on cooling.
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(supporting information Figure S3), possibly due
either to magnetite precipitation out of the glass
matrix, or to inclusions of magnetite in low-density
silicate minerals. The same effect is not seen in the
MSH density separates.

Bulk magnetic properties in the NV samples vary
dramatically across fumarolic fissures (Figure 4).
Susceptibility and saturation remanence (Mrs)
decrease by over an order of magnitude, con-
sistent with leaching of Fe from these zones
[Papike et al., 1991]. Coercivity and remanence
ratio (Mrs/Ms) both increase, but not in a way
consistent with a simple shift to finer-grain size.
On the Day plot (Figure 3b), these altered Site 4
samples shift away from the SD-MD mixing
curve (to the right), rather than along it. This
may be due to mineralogical variation—for
example, an increasing fraction of titano-
hematite or goethite—or to an increasing con-
tribution from SP grains. The rhys shape parame-
ter of Fabian [2003] increases for these samples,
indicating a more wasp-waisted shape consist-
ent with either mixing of high-coercivity and
low-coercivity phases, or of PSD/SD and SP grain
sizes. The 3-axis IRM results (above) suggest that
it may be the former.

3.2. NRM Directions
Almost all samples show a single component of
magnetization in both thermal and AF demagnet-
ization. All specimens have principal component
directions with a maximum angular deviation
[Kirschvink, 1980] and a deviation angle [Tauxe and
Staudigel, 2004] of <108. Specimen-level results
and locality means are shown in Figure 5. Site and
locality means are detailed in supporting informa-
tion Table S1. The MSH mean is indistinguishable
from the expected 1980 Definitive Geomagnetic
Reference Field (DGRF) direction, while the NV
value is slightly shallower than the 1912 DGRF
direction. This latter deviation is largely controlled
by site 5, which may have undergone some post-
emplacement rotation. If removed, the NV mean
comes into statistical agreement with DGRF.

3.3. Paleointensity
Paleointensity results from Novarupta are mostly
poorly behaved. Typical behavior includes a large
loss of NRM (up to 50%) at low temperatures
(<350–4008C) with very little pTRM gain (Figures

6c and 6d). The resulting paleointensity derived from the low-temperature slope is far higher (up to 200–400%
greater) than the value of 55.2 lT expected from the DGRF, and that derived from the high-temperature slope is
far lower (often< 50%). A small number of samples have nearly linear Arai plots over the entire temperature
interval and these slopes give paleointensity values approximately consistent with the expected value (Figures 6a

Figure 3. Hysteresis parameters by site for (a) Mt. St. Helens and (b)
Novarupta. (c) Comparison with two larger flows. Tiva Canyon data
from Till et al. [2011]. Bishop Tuff data from Gee et al. [2010]. Magnetite
mixing curves from Dunlop [2002] are shown for reference only. Mr:
saturation remanent magnetization; Ms: saturation magnetization; Bcr:
coercivity of remanence; Bc: coercivity.
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and 6b). As a check on alteration during laboratory heating, we use the difference ratio (DRAT), defined as the dif-
ference between repeat pTRM steps, normalized by the length of the selected the NRM-pTRM segment,
expressed as a percentage [Selkin and Tauxe, 2000]. For most specimens, the maximum DRAT is typically low
(<10), for both low-temperature and high-temperature slopes, and would be interpreted as ‘‘passing’’ the pTRM
check. There are no obvious rock magnetic properties (hysteresis, Tc, etc.) that distinguish the single-slope speci-
mens from dual-slope specimens.

The MSH samples typically produce results of higher technical quality, and three types of behavior can be
directly linked to magnetic mineralogy. Samples that are dominated by coarse-grained homogeneous tita-
nomagnetite with Curie temperatures between �350 and 5008C have univectoral decay up to �3508C,
accompanied by a highly scattered but linear Arai plot (Figure 7a). At T> 3508C, the directions become
highly unstable, and any semblance of linearity in the Arai plot is lost. The break between relatively stable
and relatively unstable behavior occurs at the temperature where cation reordering in these titanomagne-
tites becomes important on laboratory time scales, and Tc is evolving during the course of the experiment.
The other endmember behavior is in samples dominated by oxyexsolved titanomagnetite with high Tc (Fig-
ure 7b). In this case, most of the NRM is unblocked at T> 4508C, and the resulting Arai plot is linear with
passing pTRM checks. Samples with both magnetic phases show intermediate behavior (Figures 7c and 7d)
where at T< 300–3508C pTRM checks show low DRAT values; from 3508C to 4508C or 5008C, the Arai plot
departs from linearity and pTRM checks show higher DRAT values; and at T> 450–5008C, the Arai plot is
again linear with passing pTRM checks. We interpret this as relatively stable behavior in the homogenous
titanomagnetite below the temperature at which cation reordering begins; unstable behavior in the tem-
perature range where (un)blocking and cation reordering take place simultaneously; and stable behavior
during unblocking of the low-Ti exsolved phase. Specimens of the first type do not pass any type of quality
control criteria and are not interpreted. Specimens of the second two types typically result in paleointensity
estimates close to the expected value of 55.7 lT.

Figure 4. Section across two fumarolic cracks in the Novarupta deposit (Site 4). Distinct and spatially limited visible bleaching extends a few cm into the tuff. This is accompanied by a
dramatic decrease in susceptibility and saturation remanence, and an increase in MRS/MS and Bc. Magnetic properties abruptly return to background values outside the bleached zones,
but anomalous paleointensities persist for 10–20 cm beyond the zones. In Figure 4e, blue circles are paleointensity derived from bootstrap resampling and red squares are single-slope
analyses (see text). Dashed gray line is DGRF field intensity.
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4. Discussion

4.1. Magnetic Mineralogy
As noted above, the magnetic mineralogy in samples from both localities is dominated by preeruptive phe-
nocrysts. Reflectance microscopy and thermomagnetic data [Bowles et al., 2013; Jackson and Bowles, 2014]
demonstrate that samples contain variable proportions of two populations of phenocrysts: homogeneous
MD titanomagnetite and oxyexsolved titanomagnetite. The presence of a sizable fraction of oxyexsolved
grains in most samples reduces the average domain state to PSD, which in this study appears to accurately
recover paleointensity in the MSH samples. This is consistent with recent work by Almeida et al. [2014] who
demonstrate that PSD-sized magnetite effectively behaves in a manner similar to uniaxial SD magnetite up
to temperatures very close to Tc.

At MSH, there is some evidence suggesting that the oxyexsolution happened postemplacement, and only
in flows with high (>500–6008C) emplacement temperatures [Jackson and Bowles, 2014]. The fact that sam-
ples dominated by oxyexsolved grains reproduce the known field argues that oxyexsolution occurred at
T> Tc, or at a high enough temperature that the majority of the remanence is a TRM. Other studies have
suggested that oxyexsolution can occur at considerably lower temperatures [e.g., Smirnov and Tarduno,
2005, and references therein] but the precise temperature at which oxidation ceases is likely linked to cool-
ing rate and oxygen fugacity.

The same may be true at Novarupta, but many of the samples have clearly undergone low-temperature
alteration, which has affected the remanence in a way that is difficult to understand, but likely involves
some kind of chemical remanent magnetization (CRM) or thermochemical remanent magnetization (TCRM).
The most difficult aspect to explain is the extremely large NRM-pTRM slopes in many specimens at low
(<350–4008C) temperatures. While both a TCRM [Draeger et al., 2006; Yamamoto, 2006; Fabian, 2009] and a
viscous remanent magnetization (VRM) could result in a higher remanence than a TRM, neither model easily
explains an NRM that is up to 5–10 times stronger than the lab-induced pTRM. Results of viscosity experi-
ments confirm that VRM is an unlikely cause for this behavior. (See supporting information text and Figure
S4.) Another possible explanation is destruction or transformation of magnetic minerals during heating.
However, there is no corresponding loss of room-temperature susceptibility over the same temperature
interval that might accompany destruction; rather, susceptibility measured after each heating step either

Figure 5. Specimen NRM directions for (a) Mt. St. Helens and (c) Novarupta on equal area plots. All symbols are lower hemisphere. Circles
(squares) are thermal (AF) demagnetization. (b, d) Locality means (red dots with dashed a95 Fisher confidence ellipses) compared to
expected DGRF direction (green star).
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increases by up to 15% or decreases by <5%. Kosterov and Pr�evot [1998] observe similar (though not as
extreme) behavior in basalts and suggest it is due to domain reorganization, as imaged by De Groot et al.
[2014].

In addition to the phenocrysts, welding at NV may have also led to some postemplacement growth of
glass-hosted magnetite (inferred from density separates), which does not contribute strongly to the rema-
nence. This population is not found in the glassy MSH pumice, perhaps because it cooled too quickly for
the magnetite to nucleate and grow.

4.2. Paleointensity Data Processing
Paleointensity results from the two localities are very different, and deviations from ideal behavior appear
to be from two different causes. The Novarupta samples have experienced long-lived, low-temperature
hydrothermal activity, and this appears to have adversely impacted the magnetization and magnetic miner-
alogy. Although most specimens are influenced to some degree, if we simply accept all data points in every
Arai plot and calculate a paleofield, we see that samples taken from within or directly adjacent to focused
hydrothermal fissures deviate more from the expected paleointensity than do samples farther away from
these fissures (Figure 4e). By contrast, the MSH paleointensity data can be interpreted in a relatively
straightforward manner linked to magnetic mineralogy (section 3.3).

Given the highly nonideal behavior of most of the Novarupta data, we are faced with the reasonable pros-
pect of rejecting it all, or devising a way to calculate paleointensity while appropriately estimating the
uncertainty. We have taken two very different approaches, and we suggest that combined they give a full

Figure 6. Representative Arai (NRM-pTRM) plots from Novarupta. Best fit lines include all data between 1008C and first point where
NRM� 5% starting value. Insets are NRM vector endpoint plots. Blue circles are zero field – in field (ZI) steps. Red circles are in field – zero
field (IZ) steps. Lighter shading indicates points not used in slope calculation. Squares are pTRM checks. Banc 5 paleointensity estimate;
DRAT 5 difference ratio [Selkin and Tauxe, 2000]; b 5 standard error of slope divided by slope [Coe et al., 1978]; k 5 curvature [Paterson,
2011].
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picture of the uncertainty in the resulting paleointensity. The first approach applies very strict selection cri-
teria to the data, passing only a very small number of well-behaved specimens. The second method takes
the opposite approach, applying very lenient selection criteria, but using all the data in a multislope boot-
strap approach that incorporates specimen-level uncertainty in the locality mean.

Before we describe these two approaches, we briefly explain the quality-control selection criteria we use.
Many parameters have been proposed to test for nonideal behavior in paleointensity experiments (see
recent reviews by Shaar and Tauxe [2013] and Paterson et al. [2014a]).

Here we select parameters that control for (1) nonlinearity in the NRM-pTRM plot and (2) alteration during labo-
ratory heating. To control for nonlinearity, we simply require that the scatter in the best fit slope be low, as esti-
mated by the standard error of the slope divided by the slope [Coe et al., 1978], here denoted b. While Paterson
[2011] suggests fitting a circle to the Arai plot and taking the curvature (k 5 1/radius) as a way to detect nonli-
nearity in the plot, this parameter was unable to discriminate between a true single-slope plot and a dual-slope
plot. The slope shown in Figure 6c is clearly nonlinear, yet it has a low k value [Paterson, 2011]. Because this test
was designed to recognize the curvature or ‘‘sag’’ of MD behavior, it is perhaps not surprising that it does not
work here, where the nonlinearity arises from some other cause and an arc will not fit the data well.

To test for alteration during laboratory heating, we require the maximum DRAT to be �10%. It has been
suggested that it is more appropriate to calculate a cumulative DRAT (DRATs or CDRAT), defined as the
signed sum of the differences between repeat pTRM steps, normalized by the pTRM acquired by cooling
from the maximum temperature step used in the slope calculation to room temperature [Tauxe and Staudi-
gel, 2004]. However, using DRATs instead of DRAT in the multislope (bootstrap) approach has the effect of
excluding many of the very steep, low-temperature slopes from the NV data set; the resulting DRATs values
are very large, because little to no pTRM is gained over this interval.

Figure 7. Representative Arai (NRM-pTRM) plots from Mt. St. Helens. Best fit lines as in Figure 6, except for Figure 7a which includes data only up to 3508C to illustration change in behav-
ior at this temperature (see text). If all data were included for this specimen, Banc 5 40.8 lT; DRAT 5 47.1; b 5 0.25. Symbols as in Figure 6.
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Finally, in the multislope approach, we do not include slopes that carry a very small fraction of the rema-
nence. We define f* as the fraction of total NRM held by the slope of interest. In other words, if Tmin 5 2008C
and Tmax 5 4008C, f* 5 [NRM200 2 NRM400]/NRMtot. This is a simpler calculation than most fraction statistics
previously used (e.g., f of Coe et al. [1978]; fvds of Tauxe and Staudigel [2004]; FRAC of Shaar and Tauxe
[2013]), but it avoids complications arising from noise in the data, and because the NRMs are all unidirec-
tional it does not overestimate the true NRM fraction.

Although it may seem that using a greater number of criteria will produce a more reliable result, we find
that typically only a small number of criteria explain the variability in any given data set, depending on the
cause(s) of nonideal behavior. Application to this study of any of the suggested selection criteria sets
explored in Paterson et al. [2014b]—including the PICRIT03 [Kissel and Laj, 2004] and SELCRIT2 [Biggin et al.,
2007] criteria—almost always produces results that deviate more greatly from the known value. (See sup-
porting information Table S4 and Figure S5 for a summary.) For MSH, the deviations are slight for the
single-slope case but increase for the bootstrapped case such that the mean no longer overlaps the known
value at the 95% confidence level. If f is forced to be� 0.35, the deviations become negligible. For NV, in
the single-slope case, failure arises from the relatively lax b threshold (0.1) used by these selection criteria.
By contrast, enforcing any b criteria in the bootstrap case results in rejection of all portions of the Arai plot
near the break in slope. This final result is a lower average paleointensity.
4.2.1. Single-Slope Approach
The major problem with the NV data lies in the two-slope nature of the Arai plots. To deal with this, we apply
an objective selection criterion that only selects single-slope specimens. For each specimen, we calculate b
using a single fit to data from all temperature steps between 1008C and the first temperature where the NRM
is� 5% of the starting value. To select the cut-off value for b, we calculate the standard deviation of the entire
locality mean paleointensity for a range of b between 0.02 and 0.10 (Figure 8a). We find that for both NV and
MSH, the dispersion in the data set (as measured by the standard deviation) begins to increase for values of
b> 0.04. We repeat the process with the additional constraint of DRAT� 10, but for low values of b there is lit-
tle difference in the resulting mean or standard deviation (Figure 8). The resulting locality mean paleointensity
estimates (using b� 0.04 as the sole selection criteria) are 56.1 6 1.14 lT (2 standard error of the mean; 95%
confidence bounds) for MSH and 57.4 6 2.70 lT for NV (Figure 9 and Table 1). Both means are consistent with
the expected value at the 95% confidence level. By including the DRAT criterion, the NV mean barely excludes
the expected value at this level, but is still within 6% of the expected value. All specimens processed in this
way are listed in supporting information Tables S2 and S3.

At the site level, the MSH results show some intersite variability, with site averages ranging from 52.8 to 59.7
lT (no DRAT) or 49.0 to 59.7 lT (DRAT� 10) (supporting information Figure S6). This suggests that it is benefi-
cial to sample both widely and abundantly in order to average out small local variations that may arise from
local crustal magnetic anomalies or other sources. Of the 14 passing specimens from NV, all but two are from
a single site (site 2), which may partially explain why the NV mean deviates more from the true value than at
MSH. The small number of specimens may also explain why the NV locality mean is sensitive to the exclusion
of one additional specimen that results from applying the DRAT criterion (Figures 8 and 9). We therefore take
a second approach whereby all data from all specimens are included in a bootstrap resampling process.
4.2.2. Multislope (Bootstrap) Approach
When interpreting Arai plots, one approach is to select a single temperature range and calculate one slope
over this range (as above). The investigator is guided by experimental evidence of viscous overprints or
thermochemical alteration, but ultimately the selection is somewhat subjective. When two slopes are pres-
ent, a decision must be made to interpret one or the other, and in the absence of pTRM check failures, the
high-temperature slope is typically selected.

Here we take a completely different approach that assumes that the ‘‘true’’ answer lies somewhere in the range
of the data and explores all possible solutions, rather than subjectively selecting a single solution. We conduct
this bootstrap resampling (or ‘‘multislope’’) approach in several ways to test the sensitivity of the results. First, we
take the approach of Bowles et al. [2005] (denoted JB in Table 1), where all possible slopes of� 4 continuous
points are calculated (subject to the constraints described below). The specimen mean is taken to be the mean
of these slopes, and the scatter in the data is represented by standard deviation of the mean. To find the locality
mean, we conduct a bootstrap resampling (with replacement) of the N specimens, whereby a specimen is cho-
sen at random, and its mean paleointensity is perturbed by a random Gaussian deviate about the standard
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deviation. This is repeated N times, and the
mean of the N paleointensity estimates is 1 boot-
strapped mean. The entire resampling process is
repeated 10,000 times, and the mean of the
10,000 bootstrap means is taken to be the local-
ity mean. We require that each individual slope
have an f* value> 0.4. We repeat the process
with the additional constraint that individual
slope DRAT� 10. Results are detailed in Table 1
and Figure 9.

We compare these results to those obtained
from a similar approach taken by Shaar and
Tauxe [2013] which we reproduce here. Instead
of calculating a specimen-level paleointensity
mean and standard deviation from the accept-
able slopes, the Shaar and Tauxe [2013] boot-
strap resampling process selects one of the
permissible specimen slopes at random. They
call this the ‘‘nonparametric’’ approach
(denoted RSnp in Table 1), and contrast it with
a ‘‘parametric’’ approach (RSp), where the true
specimen-level paleointensity is assumed to lie
within the interval defined by the maximum
and minimum permissible slopes. During the
bootstrap resampling in the parametric
approach, a value is randomly selected within
this interval, assuming a uniform distribution
function. We apply the same individual slope
f* and DRAT constraints.

For the MSH data, which are generally of high
technical quality, the approach chosen does not
strongly affect the results. The exception is the
bootstrap approach without the DRAT constraint
that results in a locality mean that is slightly too
low, and does not overlap the known value at
the 95% confidence level (JB and RSnp Figure
9). The DRAT criterion therefore appears to effec-
tively discriminate against specimens that may
be altering or undergoing cation reordering dur-
ing experimental reheating.

For the NV data, the results are more variable
depending on the approach, but with the
exception of the parametric bootstrap, all
methods overlap the true field at the 95% con-
fidence level (Figure 9). The parametric boot-
strap appears to give too much weight to the
steep, low-temperature slopes. As with the
MSH data, the multislope approach uncon-
strained by DRAT results in lower paleofield
estimates, but in this case the uncertainty is
larger and still encompasses the known value.

In the NV case, with one steep and one shallow
slope, the assumption that the ‘‘true’’ answer

Figure 8. Results of single-slope analysis. (a) Variation in standard devia-
tion of paleointensity mean calculated via the single-slope method, as a
function of the maximum allowed b. Circles are NV, stars are MSH. Red
symbols are calculated using b as the only discriminant. Blue symbols
additionally reject any specimens with DRAT> 10. Variation in locality
mean paleointensity for (b) MSH and (c) NV. Error bars represent 95%
confidence bounds (2 standard error of the mean). Red circles are means
calculated using b as the only discriminant. Blue stars additionally reject
any specimens with DRAT> 10. Numbers at bottom of charts represent
the number of specimens included in the mean. Data are shifted slightly
so all error bars are visible.
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lies somewhere in the range of the data is likely correct, but the agreement between the bootstrapped
result and the true value may be coincidental. The method only reproduces the range of uncertainty repre-
sented by the actual data, and in cases where the sample carries a total CRM or TCRM, the true value may
not be contained within the available data. Likewise, if samples alter at moderate temperature, failed pTRM
checks would exclude all slopes in the high-temperature range, and the low-temperature slope would dom-
inate the result. The technique is perhaps most useful when there is significant noise in the NRM-pTRM data
or when two slopes are present and it is unclear which is the correct one. In the present case, the fact that
the bootstrapped result agrees with the (few) single-slope results gives added confidence to the overall
result.

4.3. Interpretation
We now address the results in the context of emplacement temperature and postemplacement alteration.
In the MSH samples, emplacement temperature has an indirect effect on paleointensity by controlling the

Figure 9. Summary of paleointensity interpretations. Locality means as shown in Table 1. Error bars are 95% confidence intervals. Horizon-
tal gray line is expected DGRF field value. Numbers on horizontal axis keyed to Table 1. Red squares are single-slope analyses. Blue circles
are bootstrap analyses. DRAT indicates additional constraint of DRAT� 10 imposed. See text and Table 1 for abbreviation explanations.
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fraction of oxyexsolved grains. Sites for which we have evidence for low emplacement temperature (MSH
Sites 2, 8) are dominated by homogeneous, MD titanomagnetite that undergoes cation reordering during
laboratory heating. The location of MSH site 8 is at the northernmost edge of the pumice plain, which is
dominated by the 18 May flow. Further, it is capped by a characteristic ash layer �50 cm thick, which we
attribute to the air fall from the Plinian column on 18 May. Measured emplacement temperatures for the
18 May flow near our site 8 are �3508C [Banks and Hoblitt, 1996; Jackson and Bowles, 2014]. Site 2 is harder
to assign to a specific eruption because flow unit boundaries overlap, and it is difficult to distinguish one
flow from another in outcrop. However, thermal demagnetization of incorporated lithic fragments show
removal of a low-temperature overprint in the direction of the present field at �2758C, which is inter-
preted to be the emplacement temperature [e.g., Hoblitt and Kellogg, 1979], assuming equivalence of
blocking and unblocking temperatures. Paleointensity results from these two sites are largely unsuccessful.
By contrast, sites emplaced at higher temperatures have a higher proportion of oxyexsolved grains, which
have a smaller effective grain size and are not subject to cation reordering. These sites are largely
successful.

At Novarupta, both the short, high-temperature fumarolic activity and the longer, low-temperature vapor
phase alteration have clearly had an impact on the magnetization of the NV samples. Samples within and
immediately adjacent to visibly leached zones of focused high-temperature fumarolic activity have paleoin-
tensities that are significantly lower than both the true value and than other samples (Figure 4e). Samples
away from these concentrated zones still mostly show nonideal behavior in the form of two-slope Arai
plots, but the deviation from the known field intensity is not as severe.

As hydrothermal alteration (both focused and diffuse) is clearly damaging to paleointensity results, care
should be taken to avoid hydrothermally altered areas. The visibly altered, low-susceptibility zones are easy
to avoid, yet samples adjacent to these zones but with ‘‘normal’’ magnetic properties and color also have
paleointensities that deviate strongly from the true value, especially on either side of the leached zone at
�0.5 m (Figure 4e). As an additional check on postemplacement alteration, we plot deviation from known
field value against LOI (Figure 10). Now the samples which had ‘‘normal’’ magnetic properties but highly
deviant paleointensities plot in the field with high LOI. There is a clear distinction between specimens with-
> 0.75% LOI which deviate from the true field value by �60–80%, and samples with< 0.75% LOI which
deviate by less than �20%. While 20% deviation is not ideal, it may be acceptable depending on the goals
of the study. We do not suggest that a 0.75% LOI cutoff is universally applicable, as the water content is
likely to reflect both preeruptive water and posteruptive hydration, but large variations in LOI linked to

Table 1. Summary of Paleointensity Locality Means

Methoda Additional Constraintsb Mean (lT) 95% conf. (lT)c N

Mt. St. Helens (55.7 lT)
1 Single slope b� 0.04 56.1 1.14 103
2 Single slope b� 0.04; DRAT� 10 56.3 1.12 101
3 Bootstrap, JB f*� 0.4; Npts� 4 53.3 1.74 189
4 Bootstrap, RSnp f*� 0.4; Npts� 4 53.3 1.76 189
5 Bootstrap, RSp f*� 0.4; Npts� 4 55.5 1.92 189
6 Bootstrap, JB f*� 0.4; Npts� 4; DRAT� 10 55.7 1.62 164
7 Bootstrap, RSnp f*� 0.4; Npts� 4; DRAT� 10 55.7 1.58 164
8 Bootstrap, RSp f*� 0.4; Npts� 4; DRAT� 10 56.4 1.70 164
Novarupta (55.2 lT)
1 Single slope b� 0.04 57.4 2.70 13
2 Single slope b� 0.04; DRAT� 10 58.2 2.34 12
3 Bootstrap, JB f*� 0.4; Npts� 4 51.2 5.52 139
4 Bootstrap, RSnp f*� 0.4; Npts� 4 49.7 5.82 142
5 Bootstrap, RSp f*� 0.4; Npts� 4 69.2 8.78 142
6 Bootstrap, JB f*� 0.4; Npts� 4; DRAT� 10 54.2 5.42 134
7 Bootstrap, RSnp f*� 0.4; Npts� 4; DRAT� 10 52.6 5.82 137
8 Bootstrap, RSp f*� 0.4; Npts� 4; DRAT� 10 70.4 8.76 137

aJB denotes approach used in Bowles et al. [2005]. RSnp and RSp are the nonparametric and parametric approaches from Shaar and
Tauxe [2013].

bAdditional constraints applied to bootstrapped specimens are applied at the individual slope level (see text).
c95% confidence bounds for single slope case calculated as two times the standard error (SE) of the mean, where SE is estimated as

the estimated standard deviation divided by �N. In the bootstrap case, 95% confidence bounds are taken as the interval that contains
95% of the bootstrapped means.
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variation in paleointensity is a red flag. Ferk et al. [2012] find a similar pattern in rhyolitic obsidian, where
lower paleointensities are associated with greater hydration. In that case, however, the most hydrated sam-
ples had lower coercivity, whereas the most altered samples from NV site 4 have elevated coercivity.
Although the mineral assemblage carrying the NRM may be different, the alteration process in both cases
appears to result in a CRM that is lower than the corresponding TRM.

Taken as a whole, the data from both localities suggest that PDCs can be suitably used for paleointensity
studies, but that just as in any paleointensity study care should be taken to identify potential postemplace-
ment alteration at T< Tc. In this respect, larger, welded flows are more likely to undergo focused fumarolic
or vapor phase alteration, and should be subjected to extra scrutiny. These larger PDCs may yield reliable
paleointensities, but careful documentation of the thermal and alteration history and of the internal consis-
tency of paleofield estimates appear to be advisable.

PDCs that are not dominated by glass-hosted magnetite may still contain abundant PSD magnetite in
oxyexsolved phenocrysts, and in this respect they are very similar to basalt flows. One potential advant-
age over lava flows is the greater areal (or spatial) extent of most PDCs which allows for much more
extensive sampling and a better assessment of errors and uncertainty in paleointensity estimates. We
strongly recommend always sampling as widely as possible, given the limitations imposed by available
outcrop.

In the interpretation of less than ideal data (i.e., specimens lacking a single, linear Arai slope), we suggest
that one either completely reject them, or use multiple approaches as a means of better assessing the
uncertainty in the resulting paleointensity estimate. In the case of the NV data, the most dangerous thing to
do would be to reject the steep, low-temperature slope (as a viscous overprint, e.g.) and analyze just the
high-temperature data.

5. Conclusions

Samples from the historical 1912 Novarupta ash flow and the 1980 Mt. St. Helens flows were collected to
assess the use of PDCs in paleointensity studies, and to test the effects of emplacement temperature and
postemplacement fumarolic or vapor phase alteration on paleointensity estimates. Compared to previous
paleointensity work on PDCs, these flows were sampled much more extensively, and by working with his-
torical flows, we can compare results to known field values.

Figure 10. Percent deviation from DGRF paleointensity value (55.2 lT) as a function of loss on ignition (LOI) for Novarupta specimens. Red
squares are single-slope analyses. (Note that none would pass the criteria given in the main text). Error bars are derived from standard
deviation of the Arai slope. Blue circles are multislope analyses (JB, see main text) with one standard deviation of all permissible slopes.
Samples with <0.75% LOI have paleointensities clustered between 620% of DGRF value, while samples with >0.75% LOI have paleointen-
sities that deviate by 60% or more from the DGRF value.
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NRM is carried by variable fractions of homogeneous, MD titanomagnetite and oxyexsolved titanomagne-
tite with an effective PSD grain size. The homogeneous titanomagnetite undergoes cation reordering in the
temperature interval of �350–5008C, leading to unstable remanence behavior.

At MSH, flows emplaced at low (<3508C) temperatures are dominated by homogenous titanomagnetite,
leading to an indirect effect of emplacement temperature on paleointensity estimates. Almost all NV speci-
mens have a distinct two-slope behavior in the NRM-pTRM plot that we attribute at least partially to a
(T)CRM acquired during postemplacement vapor phase alteration. The largest deviations from the known
field value are found in samples with the highest water contents and closest to fossil fumarole zones.

We took two contrasting approaches to interpreting the data. The first applies very stringent selection crite-
ria, accepting only those specimens with a linear NRM-pTRM plot over the entire temperature range. The
second approach applies very lenient criteria, but uses all of the data in a multislope bootstrap approach
that incorporates specimen-level uncertainty into the locality mean. In cases where the technical quality of
the paleointensity data are generally high (as at MSH), the results are insensitive to the approach used. In
cases where the technical quality is generally low (as at NV), the variability with approach used more accu-
rately reflects the true uncertainty in these samples with two slope behavior. Although this latter result may
not be universally true depending on the nature of the (T)CRM in other samples, we find it advisable to take
multiple approaches to interpreting the data.

We find that PDCs can be safely used for paleointensity studies, but that care should be taken in identifying
potential postemplacement alteration at T< Tc. One advantage in using PDCs over basalt flows lies in the
greater areal extent of PDCs, which allows for more extensive sampling and a better assessment of errors
and uncertainty.
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