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Terahertz generation by optical rectification in

uniaxial birefringent crystals
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N. C. Giles,* and A. D. Bristow™"
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* Department of Engineering Physics, Air Force Institute of Technology, Wright-Patterson Air Force Base,

Ohio 45433, USA
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Abstract: The angular dependence of terahertz (THz) emission from
birefringent crystals can differ significantly from that of cubic crystals.
Here we consider optical rectification in uniaxial birefringent materials,
such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP,
and compared to (zincblende) GaP. Although the crystals share the same
nonzero second-order tensor elements, the birefringence in chalcopyrite
crystals cause the pump pulse polarization to evolve as it propagates
through the crystal, resulting in a drastically different angular dependence
in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut
chalcopyrite crystals and predicts more efficient conversion for the {114}
crystal cut over the {012}- and {110}-cuts.

OCIS codes: (190.5970) Semiconductor nonlinear optics; (260.1440) Birefringence.
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1. Introduction

Advances in broadband terahertz (THz) pulse generation by optical rectification have led to
significant increases in available pulse energies, applicable for communications [1], imaging
and spectroscopy [2], coherent control [3], and chemical recognition [4]. Efficient single-
cycle pulses have been demonstrated by tilted-pulse-front pumping in LiNbO; [5], collinear
phase matching in (110)-cut ZnGeP, (ZGP) [6,7], GaSe [8], and organic dimethyl amino 4-N-
methylstilbazolium tosylate (DAST) [9] and 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-
enylidene]lmalononitrile (OH1) [10] crystals, all of which are birefringent. In nonlinear optics
in general, birefringence allows for flexibility of phase-matching conditions, but also adds
potential complication due to the evolution of the polarization within the crystal. To make full
use of various nonlinear optical crystals for broadband THz generation, it is useful to explore
the effects of birefringence on optical rectification in uniaxial and biaxial materials.

An example of a positive-uniaxial birefringent THz source is ZGP [6,7], which is a
chalcopyrite crystal and a ternary analog of the zincblende structure. Chalcopyrite crystals are
of interest as THz sources due to their generally large nonlinearities and in some cases wide
band gaps [11], the latter of which limits loss due to multiphoton absorption for near-infrared
pumping. A previous comparative study [7] of the THz emission amplitude from ZGP, GaP,
and GaAs showed ZGP to have suitable characteristics for excitation by near-infrared sources
such as pulsed-fiber or chromium-doped forsterite lasers. However, it has a 2% lattice
compression in the [001] direction, producing significant birefringence.

The work presented here explores the orientation dependence of uniaxial birefringent
chalcopyrite crystals in order to optimize the phase-matching condition and build
understanding of the optical rectification process. Chalcopyrite crystals provide an ideal
choice for a study of the effects of birefringence due to their similarity to cubic zincblende
structures. Because the second-order nonlinear tensors of these two structures have identical
nonzero elements, differences in the respective angular dependence result either from
differing values of the nonzero tensor elements or effects due to birefringence, and we argue
here that the latter is dominant. First, analysis is presented comparing zincblende and
chalcopyrite materials. Second, experimental verification of the analysis is presented. Finally,
the analysis is extended to other crystal orientations to demonstrate optimization of the
effective nonlinear coefficient.

2. Analysis
The second-order polarization due to optical rectification [12] is
P® =%"2¢,d,,(0,0,-0)E; (0)E; (w) 1)
j.k

o ijk



where &, is the permittivity of free space, E,,, () are the pump electric fields and dj is the

i)
second-order nonlinear tensor. Zincblende crystals have 43m point group symmetry and

three nonzero tensor elements, di,=d,s=dss. By comparison, chalcopyrite crystals have 42m
symmetry and a similar tensor structure, with nonzero elements d;4,=dys#dsg [13]. Typically,
to obtain optimum optical rectification zincblende crystals are cut in the (110) plane, where
the [001] direction is in the plane. The wavevector of the pump fields is normal to the crystal
surface. The angle between the linear pump polarization and the [001] direction is defined as

6. The emitted THz field can be determined as a function of @ for co-polarized ( Ey,,,) and

cross-polarized (E}, ) configurations, where in the former (latter) case the pump and THz
polarizations are parallel (perpendicular).
Because ZGP is birefringent, the phase of the ordinary (0) wave, along [110], evolves

with respect to the phase of the extraordinary (e) wave, along [001]. Neglecting losses, the
optical field at a depth D within the crystal is

E(6,D,t) = E, sinfexp[i(k,D+ at) ]+ E, cosOexp[i(k,D+ at)], )

where E, is the magnitude of the optical field, w is the optical frequency, and k, and k. are the
wavevectors of the ordinary and extraordinary components. For a pump field defined with
arbitrary @orientation Eq. (1) gives the nonlinear polarization in the crystal frame

P2 (D) = —22¢,E?d,, cos(k, D) cos &sin 6
P?(D) = 2/2¢,EZ2d,, cos(k, D) cos @sin @ ®)
P?(D) = —2¢,E?d.;sin’ 0

where the relative phase is defined as kyq = ke — Ko. For di4= dsg and kg = 0, these expressions
reduce to those of zincblende crystals [12,14]. For chalcopyrites however, the oscillating

cos(k,D) dependence of P and P® leads to generation of periodically interfering THz
field components that become increasingly negligible for crystal lengths greater than 27 /K, .

In contrast, the field components resulting from P increase linearly with the crystal length,
assuming good velocity-matching of the optical and THz waves.
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Fig. 1. Experimental and theoretical THz peak-to-peak field amplitude for a (a) (110)-cut GaP
crystal with zincblende structure [14] and (b) (110)-cut ZnGeP, crystal with chalcopyrite
structure and uniaxial birefringence. Theoretical prediction of the THz emission for uniaxial
chalcopyrite structures cut in the (c) (012) plane and (d) (114) plane.

In (110)-cut ZGP, 2z/k, =30 um for 1300 nm excitation [15], which is a pump
wavelength of interest. Typically, a real sample will be at least an order of magnitude longer
than 27z /k, , and therefore, it is justified to neglect the P and P® completely, and the
contribution from dy, in this plane is effectively nonexistent. The co- and cross-polarized
components of the THz emission are thus



ES, (0) < PP? =-2¢ E2d,, cosdsin® 6, ()
E}. (0) P;z) =2¢ E’d, sin’ 6. (5)
Figure 1(a) and (b) show the prediction of ES, and E, from (110)-cut zincblende and

positive-uniaxial chalcopyrite structures as a function of the azimuthal angle. The two curves
are on a relative scale, normalized to (E,)°dss, allowing for comparison of the THz field

magnitudes. The maximum ES, component for chalcopyrite is reduced in comparison to the

zincblende structure, but the maximum E]5, component remains strong in both structures.

This model is valid for crystal lengths shorter than the temporal walk-off length between o
and e waves. The maximum effective d coefficient is dss for chalcopyrite crystals, and
(2/3"?)d36 for zincblende crystals.

3. Experimental Verification

The angular dependence of THz emission was measured in as-grown ZGP and undoped GaP
samples with thicknesses of 0.33 mm and 0.1 mm respectively. As-grown ZGP single crystals
were produced by the horizontal gradient freeze technique [16]. The ZGP sample was cut in
the (110) plane and double-side polished for transmission measurements. The orientation of

the crystals was verified by electron paramagnetic resonance, ensuring that the <001>

direction is in the plane of the sample [17]. The transmission and birefringence homogeneity
were verified with polarized transmission imaging. GaP is commercially available.
Measurements were performed at normal pump incidence with the crystal rotated about

the axis of the pump wavevector. The generated THz field components were measured in

directions parallel (ES,) and perpendicular (E), ) to the pump pulse polarization.

Measurements employ ~100 fs pulses from a 1 kHz regenerative amplifier and optical
parametric amplifier. For GaP and ZGP the pump pulses were tuned to center wavelengths of
800 nm and 1300 nm respectively. Electro-optic sampling, with linearly polarized 800 nm
probe pulses and a (110)-cut ZnTe crystal, was used to detect the THz field. As expected, the
measured spectra were broadband (0.5 THz to 3 THz), since the emission from GaP or ZGP is
not limited by absorption due to IR-active phonons; see [7]. For ZGP, absorption in this
frequency range is known to be smaller than that of ZnTe, GaP and and LiNbO; but similar to
that of GaAs [18]. The electro-optic crystal detects one polarization component [19]. To
acquire Er, and E\, , the detection crystal and probe pulse polarization are rotated by 90°.

Field amplitudes are obtained by extracting the peak-to-peak voltage in individual THz
transients as a function of 6. The resulting angle-dependent field amplitudes for (110)-cut
GaP and ZGP are shown in Fig. 1(a) and (b) respectively. The data exhibit excellent
agreement with the model described above. ZGP is significantly longer than 27 /k, , hence
the only surviving nonzero tensor element in the model is dzs. Consequently, discussion of the
differences between the zincblende and chalcopyrite THz response resulting from the
nonlinear tensor is moot, since the signal does not depend on dy,.

4. Predictions

The possibility of efficient generation from other crystal orientations of ZGP were explored
using the above analytical approach which gives

EG) oc 2¢,E2d,, cOS® Osin O ©)
ETXHz(OlZ) oc 2¢, Eg d, cos’ @ (7)

ER™ oo (2/643),E] cosO[ 8y, 005 0+ g (—1+5c05.26) | ®)



Eni oc(2/64/3),E5 sin 0] 80, €0s” 0+ dgg (~1+ 505 20) | ©)

for the C and X polarized field amplitudes in the (012) and (114) planes. Here, the azimuthal
angle @ is generalized as the angle between the projection of [001] onto the plane of the
crystal cut and the incident linear polarization direction.

Figure 1(c) and (d) show the predictions of the angle-dependent THz generation for
uniaxial birefringent chalcopyrite crystals cut in the (012) and (114) planes respectively
[Equivalent planes in zincblende crystals would be (011) and (112).] Each of these planes has
a different near-infrared index of refraction for the e wave, but neither value varies as a
function of 6. Each crystal cut then exhibits unique phase matched wavelengths (not shown).

To understand the results it helps to inspect the crystal structures and orientations; see
Fig. 2. For zincblende structures in the (110) plane the bonds are pointing +54.7° away from

the [001] projection; this is the angle at which Ef,, is maximized; see Fig. 1(a). For ZGP the

angle is similar, if the 2% compression is ignored, but the birefringence strongly suppresses
the THz generation for pump fields oriented at that angle. Reorienting the chalcopyrite to the
(012) plane effectively rotates the bonds and the THz response by 90° relative to the [001]
projection, as seen by comparing Fig. 1(b) and (c). At the rotation angle for maximum
efficiency in each of these planes the phase-matching is best achieved for cross-polarization,
i.e. ooe for (110) cut and eeo for (012) cut crystals, where the first two waves correspond to
the pump and the third corresponds to the emission. This can be considered as a relaxation of
the singular phase matching condition observed in zincblende crystals.

zincblende chalcopyrite
T (012) 4y
[ 2 j o ’ [ c. (9 . @ [¥) < i
M)&)&)S) > ) >°> ) Au/‘\(./((, -
526 LGS 8 XX ¥ }
)H- )' ) ¥ ¢

[001] PrOJectlon _

Fig. 2 Zincblende and chalcopyrite crystal structures for the planes considered. The arrow
shows the direction of the [001] projected onto the plane of the page.

For chalcopyrite crystals, our analysis shows other efficient configurations. In fact,
stronger emission should be observed for (114)-cut crystals. All of the angle dependences in
Fig. 1 are plotted on the same relative scale, considering only the effects of birefringence with
identical physical parameters; for a (114)-cut crystal, recovery of the maximum zincblende
effective nonlinear coefficient 2/3*d,, (assuming ds=d4) is predicted; see Fig. 1(d). For this
orientation the crystal is rotated such that the bonds discussed above are now parallel to the
[001] projection onto the crystal surface. The most efficient phase-matching condition is then
eee, where all fields are collinearly polarized along this projection. For this orientation the
crystal birefringence plays no role.

To extend the predictions to arbitrary crystal planes comprehensively, the analysis of
Hargreaves et al. [14] for THz generation in zincblende crystals may be applied, taking into
account the evolving pump polarization by numerically considering the crystal to be
comprised of many thin slices. For a given @the polarization state and orientation of the
pump pulse are uniquely defined in the crystal frame by the relative phase between the o and
e waves ¢ =k, D [20], with § defining the angle between the projection of the [001] direction

and the major elliptical axis. Optical rectification is then modeled at each distance D by
considering field amplitudes along the major (a) and minor (b) axes of the elliptical
polarization state also defined by ¢ at 6.



This is illustrated for an arbitrary instantaneous elliptical polarization state in a (110)-cut
crystal in Fig. 3(a). As D increases the polarization state evolves, oscillating between two
linear polarization extremes about the optical axis of the crystal, as shown in Fig. 3(b) for
various values of 6. At each position the major and minor components are used as individual
instantaneous pump sources for THz generation within the analysis of [14]. Using the
Hargreaves notation in this calculation, § is transformed to the lab frame angle ®(D) with ¢'

=0 and the incident pump polarization fixed along 2". Then Eqn. (18) of [14] gives
instantaneous polarizations resulting from the a or b field amplitudes, with

P, (D) =P®(D)+P (D) and P.(D) =P (D)+ P (D). The Gj constants depend on the
Miller indices of the cut plane, ® (or f), dss and the incident field amplitude. A numerical
sum of the field contributions at D for the full length of the crystal gives ES, and E}, . The

results of this model are in precise agreement with those shown in Fig. 1(a)-(d). This model
gives a better physical picture of the fields and interactions inside the crystal.

= nr (even n)

...... (2n+1) n/4 (even n) -

- ==nn/2 (odd n)

...... (2n+1) n/4 (odd n) 21

——nr (odd n) a=,\‘—|“e_"’a|D

Fig. 3. (a) Arbitrary polarization state defined at a depth (D) in the crystal with uniaxial index
ellipsoid. Major, minor axes and the rotation angle relative to [001] are a, b and B

respectively. (b) Examples of the various pump polarization states at different relative phase
delays in the crystal.

5. Conclusion

Previously, chalcopyrite crystals in the form of ZGP have been shown to be useful materials
for THz generation by near infrared laser pulses [7]. The experimental and modeled results
performed here show that birefringence modifies the angular dependence of the THz emission
compared to the zincblende binary analogs. Birefringence is shown to reduce the maximum
effective nonlinear coefficient for the commonly use (110) crystal orientation, which is often
chosen based solely on the second-order tensor. In contrast it is predicted that (114) recovers
the maximum effective nonlinear coefficient and the THz generation, because this orientation
is not affected by birefringence.

This work highlights how birefringence plays a role in relaxing the phase-matching
condition for THz generation in efficient emitters, without significant detrition in the
efficiency. The model can easily be extended to other birefringent materials, given the
appropriate second-order nonlinear optical susceptibility tensor.
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