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Abstract: The angular dependence of terahertz (THz) emission from 

birefringent crystals can differ significantly from that of cubic crystals. 

Here we consider optical rectification in uniaxial birefringent materials, 

such as chalcopyrite crystals. The analysis is verified in (110)-cut ZnGeP2 

and compared to (zincblende) GaP. Although the crystals share the same 

nonzero second-order tensor elements, the birefringence in chalcopyrite 

crystals cause the pump pulse polarization to evolve as it propagates 

through the crystal, resulting in a drastically different angular dependence 

in chalcopyrite crystals. The analysis is extended to {012}- and {114}-cut 

chalcopyrite crystals and predicts more efficient conversion for the {114} 

crystal cut over the {012}- and {110}-cuts. 

 

OCIS codes: (190.5970) Semiconductor nonlinear optics; (260.1440) Birefringence. 
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1. Introduction  

Advances in broadband terahertz (THz) pulse generation by optical rectification have led to 

significant increases in available pulse energies, applicable for communications [1], imaging 

and spectroscopy [2], coherent control [3], and chemical recognition [4]. Efficient single-

cycle pulses have been demonstrated by tilted-pulse-front pumping in LiNbO3 [5], collinear 

phase matching in (110)-cut ZnGeP2 (ZGP) [6,7], GaSe [8], and organic dimethyl amino 4-N-

methylstilbazolium tosylate (DAST) [9] and 2-[3-(4-hydroxystyryl)-5,5-dimethylcyclohex-2-

enylidene]malononitrile (OH1) [10] crystals, all of which are birefringent. In nonlinear optics 

in general, birefringence allows for flexibility of phase-matching conditions, but also adds 

potential complication due to the evolution of the polarization within the crystal. To make full 

use of various nonlinear optical crystals for broadband THz generation, it is useful to explore 

the effects of birefringence on optical rectification in uniaxial and biaxial materials. 

An example of a positive-uniaxial birefringent THz source is ZGP [6,7], which is a 

chalcopyrite crystal and a ternary analog of the zincblende structure. Chalcopyrite crystals are 

of interest as THz sources due to their generally large nonlinearities and in some cases wide 

band gaps [11], the latter of which limits loss due to multiphoton absorption for near-infrared 

pumping. A previous comparative study [7] of the THz emission amplitude from ZGP, GaP, 

and GaAs showed ZGP to have suitable characteristics for excitation by near-infrared sources 

such as pulsed-fiber or chromium-doped forsterite lasers. However, it has a 2% lattice 

compression in the [001] direction, producing significant birefringence. 

The work presented here explores the orientation dependence of uniaxial birefringent 

chalcopyrite crystals in order to optimize the phase-matching condition and build 

understanding of the optical rectification process. Chalcopyrite crystals provide an ideal 

choice for a study of the effects of birefringence due to their similarity to cubic zincblende 

structures. Because the second-order nonlinear tensors of these two structures have identical 

nonzero elements, differences in the respective angular dependence result either from 

differing values of the nonzero tensor elements or effects due to birefringence, and we argue 

here that the latter is dominant. First, analysis is presented comparing zincblende and 

chalcopyrite materials. Second, experimental verification of the analysis is presented. Finally, 

the analysis is extended to other crystal orientations to demonstrate optimization of the 

effective nonlinear coefficient. 

2. Analysis 

The second-order polarization due to optical rectification [12] is 
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where o is the permittivity of free space, 
( ) ( )j kE  are the pump electric fields and dijk is the 

second-order nonlinear tensor. Zincblende crystals have 43m  point group symmetry and 

three nonzero tensor elements, d14=d25=d36. By comparison, chalcopyrite crystals have 42m  

symmetry and a similar tensor structure, with nonzero elements d14=d25≠d36 [13]. Typically, 

to obtain optimum optical rectification zincblende crystals are cut in the (110) plane, where 

the [001] direction is in the plane. The wavevector of the pump fields is normal to the crystal 

surface. The angle between the linear pump polarization and the [001] direction is defined as 

. The emitted THz field can be determined as a function of  for co-polarized ( C

THzE ) and 

cross-polarized ( X

THzE ) configurations, where in the former (latter) case the pump and THz 

polarizations are parallel (perpendicular). 

Because ZGP is birefringent, the phase of the ordinary (o) wave, along [110] , evolves 

with respect to the phase of the extraordinary (e) wave, along [001]. Neglecting losses, the 

optical field at a depth D within the crystal is 

    ( , , ) sin exp ( ) cos exp ( )o o o eE D t E i k D t E i k D t        , (2) 

where Eo is the magnitude of the optical field,  is the optical frequency, and ko and ke are the 

wavevectors of the ordinary and extraordinary components. For a pump field defined with 

arbitrary  orientation Eq. (1) gives the nonlinear polarization in the crystal frame 
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where the relative phase is defined as kd = ke  ko. For d14= d36 and kd = 0, these expressions 

reduce to those of zincblende crystals [12,14]. For chalcopyrites however, the oscillating 

cos( )dk D  dependence of (2)

XP  and (2)

YP  leads to generation of periodically interfering THz 

field components that become increasingly negligible for crystal lengths greater than 2 / dk . 

In contrast, the field components resulting from (2)

ZP increase linearly with the crystal length, 

assuming good velocity-matching of the optical and THz waves. 

 
Fig. 1. Experimental and theoretical THz peak-to-peak field amplitude for a (a) (110)-cut GaP 

crystal with zincblende structure [14] and (b) (110)-cut ZnGeP2 crystal with chalcopyrite 

structure and uniaxial birefringence. Theoretical prediction of the THz emission for uniaxial 
chalcopyrite structures cut in the (c) (012) plane and (d) (114) plane. 

In (110)-cut ZGP, 2 / 30dk  m for 1300 nm excitation [15], which is a pump 

wavelength of interest. Typically, a real sample will be at least an order of magnitude longer 

than 2 / dk , and therefore, it is justified to neglect the 
(2)

XP  and 
(2)

YP  completely, and the 

contribution from d14 in this plane is effectively nonexistent. The co- and cross-polarized 

components of the THz emission are thus 
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Figure 1(a) and (b) show the prediction of C

THzE  and X

THzE  from (110)-cut zincblende and 

positive-uniaxial chalcopyrite structures as a function of the azimuthal angle. The two curves 

are on a relative scale, normalized to (E0)
2
d36, allowing for comparison of the THz field 

magnitudes. The maximum C

THzE  component for chalcopyrite is reduced in comparison to the 

zincblende structure, but the maximum X

THzE  component remains strong in both structures. 

This model is valid for crystal lengths shorter than the temporal walk-off length between o 

and e waves. The maximum effective d coefficient is d36 for chalcopyrite crystals, and 

(2/3
1/2

)d36 for zincblende crystals. 

3. Experimental Verification 

The angular dependence of THz emission was measured in as-grown ZGP and undoped GaP 

samples with thicknesses of 0.33 mm and 0.1 mm respectively. As-grown ZGP single crystals 

were produced by the horizontal gradient freeze technique [16]. The ZGP sample was cut in 

the (110) plane and double-side polished for transmission measurements. The orientation of 

the crystals was verified by electron paramagnetic resonance, ensuring that the 001  

direction is in the plane of the sample [17]. The transmission and birefringence homogeneity 

were verified with polarized transmission imaging. GaP is commercially available. 

Measurements were performed at normal pump incidence with the crystal rotated about 

the axis of the pump wavevector. The generated THz field components were measured in 

directions parallel ( C

THzE ) and perpendicular ( X

THzE ) to the pump pulse polarization. 

Measurements employ ~100 fs pulses from a 1 kHz regenerative amplifier and optical 

parametric amplifier. For GaP and ZGP the pump pulses were tuned to center wavelengths of 

800 nm and 1300 nm respectively. Electro-optic sampling, with linearly polarized 800 nm 

probe pulses and a (110)-cut ZnTe crystal, was used to detect the THz field. As expected, the 

measured spectra were broadband (0.5 THz to 3 THz), since the emission from GaP or ZGP is 

not limited by absorption due to IR-active phonons; see [7]. For ZGP, absorption in this 

frequency range is known to be smaller than that of ZnTe, GaP and and LiNbO3 but similar to 

that of GaAs [18]. The electro-optic crystal detects one polarization component [19]. To 

acquire C

THzE  and X

THzE , the detection crystal and probe pulse polarization are rotated by 90
o
. 

Field amplitudes are obtained by extracting the peak-to-peak voltage in individual THz 

transients as a function of . The resulting angle-dependent field amplitudes for (110)-cut 

GaP and ZGP are shown in Fig. 1(a) and (b) respectively. The data exhibit excellent 

agreement with the model described above. ZGP is significantly longer than 2 / dk , hence 

the only surviving nonzero tensor element in the model is d36. Consequently, discussion of the 

differences between the zincblende and chalcopyrite THz response resulting from the 

nonlinear tensor is moot, since the signal does not depend on d14. 

4. Predictions 

The possibility of efficient generation from other crystal orientations of ZGP were explored 

using the above analytical approach which gives 
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for the C and X polarized field amplitudes in the (012) and (114) planes. Here, the azimuthal 

angle  is generalized as the angle between the projection of [001] onto the plane of the 

crystal cut and the incident linear polarization direction. 

Figure 1(c) and (d) show the predictions of the angle-dependent THz generation for 

uniaxial birefringent chalcopyrite crystals cut in the (012) and (114) planes respectively 

[Equivalent planes in zincblende crystals would be (011) and (112).] Each of these planes has 

a different near-infrared index of refraction for the e wave, but neither value varies as a 

function of . Each crystal cut then exhibits unique phase matched wavelengths (not shown). 

To understand the results it helps to inspect the crystal structures and orientations; see 

Fig. 2. For zincblende structures in the (110) plane the bonds are pointing ±54.7
o
 away from 

the [001] projection; this is the angle at which C

THzE  is maximized; see Fig. 1(a). For ZGP the 

angle is similar, if the 2% compression is ignored, but the birefringence strongly suppresses 

the THz generation for pump fields oriented at that angle. Reorienting the chalcopyrite to the 

(012) plane effectively rotates the bonds and the THz response by 90
o
 relative to the [001] 

projection, as seen by comparing Fig. 1(b) and (c). At the rotation angle for maximum 

efficiency in each of these planes the phase-matching is best achieved for cross-polarization, 

i.e. ooe for (110) cut and eeo for (012) cut crystals, where the first two waves correspond to 

the pump and the third corresponds to the emission. This can be considered as a relaxation of 

the singular phase matching condition observed in zincblende crystals. 

 
Fig. 2 Zincblende and chalcopyrite crystal structures for the planes considered. The arrow 

shows the direction of the [001] projected onto the plane of the page. 

For chalcopyrite crystals, our analysis shows other efficient configurations. In fact, 

stronger emission should be observed for (114)-cut crystals. All of the angle dependences in 

Fig. 1 are plotted on the same relative scale, considering only the effects of birefringence with 

identical physical parameters; for a (114)-cut crystal, recovery of the maximum zincblende 

effective nonlinear coefficient 2/3
1/2

d14 (assuming d36=d14) is predicted; see Fig. 1(d). For this 

orientation the crystal is rotated such that the bonds discussed above are now parallel to the 

[001] projection onto the crystal surface. The most efficient phase-matching condition is then 

eee, where all fields are collinearly polarized along this projection. For this orientation the 

crystal birefringence plays no role. 

To extend the predictions to arbitrary crystal planes comprehensively, the analysis of 

Hargreaves et al. [14] for THz generation in zincblende crystals may be applied, taking into 

account the evolving pump polarization by numerically considering the crystal to be 

comprised of many thin slices. For a given the polarization state and orientation of the 

pump pulse are uniquely defined in the crystal frame by the relative phase between the o and 

e waves dk D  [20], with β defining the angle between the projection of the [001] direction 

and the major elliptical axis. Optical rectification is then modeled at each distance D by 

considering field amplitudes along the major (a) and minor (b) axes of the elliptical 

polarization state also defined by δ at .  



This is illustrated for an arbitrary instantaneous elliptical polarization state in a (110)-cut 

crystal in Fig. 3(a). As D increases the polarization state evolves, oscillating between two 

linear polarization extremes about the optical axis of the crystal, as shown in Fig. 3(b) for 

various values of . At each position the major and minor components are used as individual 

instantaneous pump sources for THz generation within the analysis of [14]. Using the 

Hargreaves notation in this calculation, β is transformed to the lab frame angle Φ(D) with '

=0 and the incident pump polarization fixed along ˆ ''z . Then Eqn. (18) of [14] gives 

instantaneous polarizations resulting from the a or b field amplitudes, with 
( ) ( )

'' ''( ) ( ) ( )a b

X y yP D P D P D   and ( ) ( )

'' ''( ) ( ) ( )a b

C z zP D P D P D  . The Gij constants depend on the 

Miller indices of the cut plane, Φ (or β), d36 and the incident field amplitude. A numerical 

sum of the field contributions at D for the full length of the crystal gives C

THzE  and X

THzE . The 

results of this model are in precise agreement with those shown in Fig. 1(a)-(d). This model 

gives a better physical picture of the fields and interactions inside the crystal. 

 
 Fig. 3. (a) Arbitrary polarization state defined at a depth (D) in the crystal with uniaxial index 

ellipsoid. Major, minor axes and the rotation angle relative to  are a, b and β 

respectively. (b) Examples of the various pump polarization states at different relative phase 
delays in the crystal. 

5. Conclusion 

Previously, chalcopyrite crystals in the form of ZGP have been shown to be useful materials 

for THz generation by near infrared laser pulses [7]. The experimental and modeled results 

performed here show that birefringence modifies the angular dependence of the THz emission 

compared to the zincblende binary analogs. Birefringence is shown to reduce the maximum 

effective nonlinear coefficient for the commonly use (110) crystal orientation, which is often 

chosen based solely on the second-order tensor. In contrast it is predicted that (114) recovers 

the maximum effective nonlinear coefficient and the THz generation, because this orientation 

is not affected by birefringence. 

This work highlights how birefringence plays a role in relaxing the phase-matching 

condition for THz generation in efficient emitters, without significant detrition in the 

efficiency. The model can easily be extended to other birefringent materials, given the 

appropriate second-order nonlinear optical susceptibility tensor. 
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