1,423 research outputs found

    Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition

    Get PDF
    Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output

    Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

    Full text link
    This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Z^n which are discrete analogs of the Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of so-called pseudodifference operators (i.e., pseudodifferential operators on the group Z^n) with analytic symbols and on the limit operators method. We obtain a description of the location of the essential spectra and estimates of the eigenfunctions of the discrete spectra of the main lattice operators of quantum mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on Z^3, and square root Klein-Gordon operators on Z^n

    An Analysis of the Representations of the Mapping Class Group of a Multi-Geon Three-Manifold

    Full text link
    It is well known that the inequivalent unitary irreducible representations (UIR's) of the mapping class group GG of a 3-manifold give rise to ``theta sectors'' in theories of quantum gravity with fixed spatial topology. In this paper, we study several families of UIR's of GG and attempt to understand the physical implications of the resulting quantum sectors. The mapping class group of a three-manifold which is the connected sum of R3\R^3 with a finite number of identical irreducible primes is a semi-direct product group. Following Mackey's theory of induced representations, we provide an analysis of the structure of the general finite dimensional UIR of such a group. In the picture of quantized primes as particles (topological geons), this general group-theoretic analysis enables one to draw several interesting qualitative conclusions about the geons' behavior in different quantum sectors, without requiring an explicit knowledge of the UIR's corresponding to the individual primes.Comment: 52 pages, harvmac, 2 postscript figures, epsf required. Added an appendix proving the semi-direct product structure of the MCG, corrected an error in the characterization of the slide subgroup, reworded extensively. All our analysis and conclusions remain as befor

    Cyclic Statistics In Three Dimensions

    Full text link
    While 2-dimensional quantum systems are known to exhibit non-permutation, braid group statistics, it is widely expected that quantum statistics in 3-dimensions is solely determined by representations of the permutation group. This expectation is false for certain 3-dimensional systems, as was shown by the authors of ref. [1,2,3]. In this work we demonstrate the existence of ``cyclic'', or ZnZ_n, {\it non-permutation group} statistics for a system of n > 2 identical, unknotted rings embedded in R3R^3. We make crucial use of a theorem due to Goldsmith in conjunction with the so called Fuchs-Rabinovitch relations for the automorphisms of the free product group on n elements.Comment: 13 pages, 1 figure, LaTex, minor page reformattin

    Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    Get PDF
    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic, and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures

    Synchronous Behavior of Two Coupled Electronic Neurons

    Full text link
    We report on experimental studies of synchronization phenomena in a pair of analog electronic neurons (ENs). The ENs were designed to reproduce the observed membrane voltage oscillations of isolated biological neurons from the stomatogastric ganglion of the California spiny lobster Panulirus interruptus. The ENs are simple analog circuits which integrate four dimensional differential equations representing fast and slow subcellular mechanisms that produce the characteristic regular/chaotic spiking-bursting behavior of these cells. In this paper we study their dynamical behavior as we couple them in the same configurations as we have done for their counterpart biological neurons. The interconnections we use for these neural oscillators are both direct electrical connections and excitatory and inhibitory chemical connections: each realized by analog circuitry and suggested by biological examples. We provide here quantitative evidence that the ENs and the biological neurons behave similarly when coupled in the same manner. They each display well defined bifurcations in their mutual synchronization and regularization. We report briefly on an experiment on coupled biological neurons and four dimensional ENs which provides further ground for testing the validity of our numerical and electronic models of individual neural behavior. Our experiments as a whole present interesting new examples of regularization and synchronization in coupled nonlinear oscillators.Comment: 26 pages, 10 figure

    Dynamical model of sequential spatial memory: winnerless competition of patterns

    Full text link
    We introduce a new biologically-motivated model of sequential spatial memory which is based on the principle of winnerless competition (WLC). We implement this mechanism in a two-layer neural network structure and present the learning dynamics which leads to the formation of a WLC network. After learning, the system is capable of associative retrieval of pre-recorded sequences of spatial patterns.Comment: 4 pages, submitted to PR

    Sound and complete axiomatizations of coalgebraic language equivalence

    Get PDF
    Coalgebras provide a uniform framework to study dynamical systems, including several types of automata. In this paper, we make use of the coalgebraic view on systems to investigate, in a uniform way, under which conditions calculi that are sound and complete with respect to behavioral equivalence can be extended to a coarser coalgebraic language equivalence, which arises from a generalised powerset construction that determinises coalgebras. We show that soundness and completeness are established by proving that expressions modulo axioms of a calculus form the rational fixpoint of the given type functor. Our main result is that the rational fixpoint of the functor FTFT, where TT is a monad describing the branching of the systems (e.g. non-determinism, weights, probability etc.), has as a quotient the rational fixpoint of the "determinised" type functor Fˉ\bar F, a lifting of FF to the category of TT-algebras. We apply our framework to the concrete example of weighted automata, for which we present a new sound and complete calculus for weighted language equivalence. As a special case, we obtain non-deterministic automata, where we recover Rabinovich's sound and complete calculus for language equivalence.Comment: Corrected version of published journal articl
    corecore