1,304 research outputs found

    A {\mu}-TPC detector for the characterization of low energy neutron fields

    Full text link
    The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20 MeV for metrological purposes. To be considered as a reference facility, fluence and energy distributions of neutron fields have to be determined by primary measurement standards. For this purpose, a micro Time Projection Chamber is being developed to be dedicated to measure neutron fields with energy ranging from 8 keV up to 1 MeV. In this work we present simulations showing that such a detector, which allows the measurement of the ionization energy and the 3D reconstruction of the recoil nucleus, provides the determination of neutron energy and fluence of these neutron fields

    Resonantly enhanced filamentation in gases

    Full text link
    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses

    Dedicated front-end and readout electronics developments for real time 3D directional detection of dark matter with MIMAC

    Full text link
    A complete dedicated electronics, from front-end to back-end, was developed to instrument a MIMAC prototype. A front end ASIC able to monitor 64 strips of pixels and to provide their individual "Time Over Threshold" information has been designed. An associated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This auto-triggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. The electronic designs, acquisition software and the results obtained are presented.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Micromegas detector developments for MIMAC

    Full text link
    The aim of the MIMAC project is to detect non-baryonic Dark Matter with a directional TPC. The recent Micromegas efforts towards building a large size detector will be described, in particular the characterization measurements of a prototype detector of 10 ×\times 10 cm2^2 with a 2 dimensional readout plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 2011; corrections on author affiliation

    Background Rejection in the DMTPC Dark Matter Search Using Charge Signals

    Full text link
    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical readout with CCD cameras allows for the detection for the daily modulation in the direction of the dark matter wind, while several charge readout channels allow for the measurement of additional recoil properties. In this article, we show that the addition of the charge readout analysis to the CCD allows us too obtain a statistics-limited 90% C.L. upper limit on the e−e^- rejection factor of 5.6×10−65.6\times10^{-6} for recoils with energies between 40 and 200 keVee_{\mathrm{ee}}. In addition, requiring coincidence between charge signals and light in the CCD reduces CCD-specific backgrounds by more than two orders of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc

    Probing neutralino dark matter in the MSSM & the NMSSM with directional detection

    Full text link
    We investigate the capability of directional detectors to probe neutralino dark matter in the Minimal Supersymmetric Standard Model and the Next-to-Minimal Supersymmetric Standard Model with parameters defined at the weak scale. We show that directional detectors such as the future MIMAC detector will probe spin dependent dark matter scattering on nucleons that are beyond the reach of current spin independent detectors. The complementarity between indirect searches, in particular using gamma rays from dwarf spheroidal galaxies, spin dependent and spin independent direct search techniques is emphasized. We comment on the impact of the negative results on squark searches at the LHC. Finally, we investigate how the fundamental parameters of the models can be constrained in the event of a dark matter signal.Comment: 21 pages, 16 figure
    • …
    corecore