1,304 research outputs found
A {\mu}-TPC detector for the characterization of low energy neutron fields
The AMANDE facility produces monoenergetic neutron fields from 2 keV to 20
MeV for metrological purposes. To be considered as a reference facility,
fluence and energy distributions of neutron fields have to be determined by
primary measurement standards. For this purpose, a micro Time Projection
Chamber is being developed to be dedicated to measure neutron fields with
energy ranging from 8 keV up to 1 MeV. In this work we present simulations
showing that such a detector, which allows the measurement of the ionization
energy and the 3D reconstruction of the recoil nucleus, provides the
determination of neutron energy and fluence of these neutron fields
Resonantly enhanced filamentation in gases
In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is
experimentally reported in the ultraviolet. The experimental findings are
supported by ab initio quantum calculations describing the atomic optical
response. Higher-order Kerr effect induced by three-photon resonant transitions
is identified as the underlying physical mechanism responsible for the
intensity stabilization during the filamentation process, while ionization
plays only a minor role. This result goes beyond the commonly-admitted paradigm
of filamentation, in which ionization is a necessary condition of the filament
intensity clamping. At resonance, it is also experimentally demonstrated that
the filament length is greatly extended because of a strong decrease of the
optical losses
Dedicated front-end and readout electronics developments for real time 3D directional detection of dark matter with MIMAC
A complete dedicated electronics, from front-end to back-end, was developed
to instrument a MIMAC prototype. A front end ASIC able to monitor 64 strips of
pixels and to provide their individual "Time Over Threshold" information has
been designed. An associated acquisition electronics and a real time track
reconstruction software have been developed to monitor a 512 channel prototype.
This auto-triggered electronic uses embedded processing to reduce the data
transfer to its useful part only, i.e. decoded coordinates of hit tracks and
corresponding energy measurements. The electronic designs, acquisition software
and the results obtained are presented.Comment: Proceedings of the 3rd International conference on Directional
Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
Micromegas detector developments for MIMAC
The aim of the MIMAC project is to detect non-baryonic Dark Matter with a
directional TPC. The recent Micromegas efforts towards building a large size
detector will be described, in particular the characterization measurements of
a prototype detector of 10 10 cm with a 2 dimensional readout
plane. Track reconstruction with alpha particles will be shown.Comment: 8 pages, 7 figures Proceedings of the 3rd International conference on
Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10
June 2011; corrections on author affiliation
Background Rejection in the DMTPC Dark Matter Search Using Charge Signals
The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing
low-pressure gas TPC detectors for measuring WIMP-nucleon interactions. Optical
readout with CCD cameras allows for the detection for the daily modulation in
the direction of the dark matter wind, while several charge readout channels
allow for the measurement of additional recoil properties. In this article, we
show that the addition of the charge readout analysis to the CCD allows us too
obtain a statistics-limited 90% C.L. upper limit on the rejection factor
of for recoils with energies between 40 and 200
keV. In addition, requiring coincidence between charge signals
and light in the CCD reduces CCD-specific backgrounds by more than two orders
of magnitude.Comment: 8 pages, 6 figures. For proceedings of DPF 2011 conferenc
Probing neutralino dark matter in the MSSM & the NMSSM with directional detection
We investigate the capability of directional detectors to probe neutralino
dark matter in the Minimal Supersymmetric Standard Model and the
Next-to-Minimal Supersymmetric Standard Model with parameters defined at the
weak scale. We show that directional detectors such as the future MIMAC
detector will probe spin dependent dark matter scattering on nucleons that are
beyond the reach of current spin independent detectors. The complementarity
between indirect searches, in particular using gamma rays from dwarf spheroidal
galaxies, spin dependent and spin independent direct search techniques is
emphasized. We comment on the impact of the negative results on squark searches
at the LHC. Finally, we investigate how the fundamental parameters of the
models can be constrained in the event of a dark matter signal.Comment: 21 pages, 16 figure
- …