270 research outputs found

    Unveiling the nature of the highly obscured AGN in NGC5643 with XMM-Newton

    Full text link
    We present results from an XMM-Newton observation of the nearby Seyfert 2 galaxy NGC5643. The nucleus exhibits a very flat X-ray continuum above 2 keV, together with a prominent K-alpha fluorescent iron line. This indicates heavy obscuration. We measure an absorbing column density N_H in the range 6-10 x 10^{23} atoms/cm/cm, either directly covering the nuclear emission, or covering its Compton-reflection. In the latter case, we might be observing a rather unusual geometry for the absorber, whereby reflection from the inner far side of a torus is in turn obscured by its near side outer atmosphere. The nuclear emission might be then either covered by a Compton-thick absorber, or undergoing a transient state of low activity. A second source (christened "X-1" in this paper) at the outskirts of NGC5643 optical surface outshines the nucleus in X-rays. If belonging to NGC5643, it is the third brightest (L_X ~ 4 x 10^{40} erg/s) known Ultra Luminous X-ray source. Comparison with past large aperture spectra of NGC 5643 unveils dramatic X-ray spectral changes above 1 keV. We interpret them as due to variability of the active nucleus and of source X-1 intrinsic X-ray powers by a factor >10 and 5, respectively.Comment: 11 LATEX pages, 12 figures, to appear in Monthly Notices of the Royal Astronomical Societ

    Stereo disparity facilitates view generalization during shape recognition for solid multipart objects

    Get PDF
    Current theories of object recognition in human vision make different predictions about whether the recognition of complex, multipart objects should be influenced by shape information about surface depth orientation and curvature derived from stereo disparity. We examined this issue in five experiments using a recognition memory paradigm in which observers (N = 134) memorized and then discriminated sets of 3D novel objects at trained and untrained viewpoints under either mono or stereo viewing conditions. In order to explore the conditions under which stereo-defined shape information contributes to object recognition we systematically varied the difficulty of view generalization by increasing the angular disparity between trained and untrained views. In one series of experiments, objects were presented from either previously trained views or untrained views rotated (15°, 30°, or 60°) along the same plane. In separate experiments we examined whether view generalization effects interacted with the vertical or horizontal plane of object rotation across 40° viewpoint changes. The results showed robust viewpoint-dependent performance costs: Observers were more efficient in recognizing learned objects from trained than from untrained views, and recognition was worse for extrapolated than for interpolated untrained views. We also found that performance was enhanced by stereo viewing but only at larger angular disparities between trained and untrained views. These findings show that object recognition is not based solely on 2D image information but that it can be facilitated by shape information derived from stereo disparity

    Gravitational physics with antimatter

    Full text link
    The production of low-energy antimatter provides unique opportunities to search for new physics in an unexplored regime. Testing gravitational interactions with antimatter is one such opportunity. Here a scenario based on Lorentz and CPT violation in the Standard- Model Extension is considered in which anomalous gravitational effects in antimatter could arise.Comment: 5 pages, presented at the International Conference on Exotic Atoms (EXA 2008) and the 9th International Conference on Low Energy Antiproton Physics (LEAP 2008), Vienna, Austria, September 200

    Yeast Screens Identify the RNA Polymerase II CTD and SPT5 as Relevant Targets of BRCA1 Interaction

    Get PDF
    BRCA1 has been implicated in numerous DNA repair pathways that maintain genome integrity, however the function responsible for its tumor suppressor activity in breast cancer remains obscure. To identify the most highly conserved of the many BRCA1 functions, we screened the evolutionarily distant eukaryote Saccharomyces cerevisiae for mutants that suppressed the G1 checkpoint arrest and lethality induced following heterologous BRCA1 expression. A genome-wide screen in the diploid deletion collection combined with a screen of ionizing radiation sensitive gene deletions identified mutants that permit growth in the presence of BRCA1. These genes delineate a metabolic mRNA pathway that temporally links transcription elongation (SPT4, SPT5, CTK1, DEF1) to nucleopore-mediated mRNA export (ASM4, MLP1, MLP2, NUP2, NUP53, NUP120, NUP133, NUP170, NUP188, POM34) and cytoplasmic mRNA decay at P-bodies (CCR4, DHH1). Strikingly, BRCA1 interacted with the phosphorylated RNA polymerase II (RNAPII) carboxy terminal domain (P-CTD), phosphorylated in the pattern specified by the CTDK-I kinase, to induce DEF1-dependent cleavage and accumulation of a RNAPII fragment containing the P-CTD. Significantly, breast cancer associated BRCT domain defects in BRCA1 that suppressed P-CTD cleavage and lethality in yeast also suppressed the physical interaction of BRCA1 with human SPT5 in breast epithelial cells, thus confirming SPT5 as a relevant target of BRCA1 interaction. Furthermore, enhanced P-CTD cleavage was observed in both yeast and human breast cells following UV-irradiation indicating a conserved eukaryotic damage response. Moreover, P-CTD cleavage in breast epithelial cells was BRCA1-dependent since damage-induced P-CTD cleavage was only observed in the mutant BRCA1 cell line HCC1937 following ectopic expression of wild type BRCA1. Finally, BRCA1, SPT5 and hyperphosphorylated RPB1 form a complex that was rapidly degraded following MMS treatment in wild type but not BRCA1 mutant breast cells. These results extend the mechanistic links between BRCA1 and transcriptional consequences in response to DNA damage and suggest an important role for RNAPII P-CTD cleavage in BRCA1-mediated cancer suppression

    General Anesthetics Predicted to Block the GLIC Pore with Micromolar Affinity

    Get PDF
    Although general anesthetics are known to modulate the activity of ligand-gated ion channels in the Cys-loop superfamily, there is at present neither consensus on the underlying mechanisms, nor predictive models of this modulation. Viable models need to offer quantitative assessment of the relative importance of several identified anesthetic binding sites. However, to date, precise affinity data for individual sites has been challenging to obtain by biophysical means. Here, the likely role of pore block inhibition by the general anesthetics isoflurane and propofol of the prokaryotic pentameric channel GLIC is investigated by molecular simulations. Microscopic affinities are calculated for both single and double occupancy binding of isoflurane and propofol to the GLIC pore. Computations are carried out for an open-pore conformation in which the pore is restrained to crystallographic radius, and a closed-pore conformation that results from unrestrained molecular dynamics equilibration of the structure. The GLIC pore is predicted to be blocked at the micromolar concentrations for which inhibition by isofluorane and propofol is observed experimentally. Calculated affinities suggest that pore block by propofol occurs at signifcantly lower concentrations than those for which inhibition is observed: we argue that this discrepancy may result from binding of propofol to an allosteric site recently identified by X-ray crystallography, which may cause a competing gain-of-function effect. Affinities of isoflurane and propofol to the allosteric site are also calculated, and shown to be 3 mM for isoflurane and for propofol; both anesthetics have a lower affinity for the allosteric site than for the unoccupied pore

    Insights in 17β-HSD1 Enzyme Kinetics and Ligand Binding by Dynamic Motion Investigation

    Get PDF
    BACKGROUND: Bisubstrate enzymes, such as 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1), exist in solution as an ensemble of conformations. 17beta-HSD1 catalyzes the last step of the biosynthesis of estradiol and, thus, it is a potentially attractive target for breast cancer treatment. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the conformational transitions of its catalytic cycle, a structural analysis of all available crystal structures was performed and representative conformations were assigned to each step of the putative kinetic mechanism. To cover most of the conformational space, all-atom molecular dynamic simulations were performed using the four crystallographic structures best describing apoform, opened, occluded and closed state of 17beta-HSD1 as starting structures. With three of them, binary and ternary complexes were built with NADPH and NADPH-estrone, respectively, while two were investigated as apoform. Free energy calculations were performed in order to judge more accurately which of the MD complexes describes a specific kinetic step. CONCLUSIONS/SIGNIFICANCE: Remarkably, the analysis of the eight long range trajectories resulting from this multi-trajectory/-complex approach revealed an essential role played by the backbone and side chain motions, especially of the betaF alphaG'-loop, in cofactor and substrate binding. Thus, a selected-fit mechanism is suggested for 17beta-HSD1, where ligand-binding induced concerted motions of the FG-segment and the C-terminal part guide the enzyme along its preferred catalytic pathway. Overall, we could assign different enzyme conformations to the five steps of the random bi-bi kinetic cycle of 17beta-HSD1 and we could postulate a preferred pathway for it. This study lays the basis for more-targeted biochemical studies on 17beta-HSD1, as well as for the design of specific inhibitors of this enzyme. Moreover, it provides a useful guideline for other enzymes, also characterized by a rigid core and a flexible region directing their catalysis

    A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter

    Get PDF
    The entire substrate translocation pathway in the human GABA transporter (GAT-1) was explored for the endogenous substrate GABA and the anti-convulsive drug tiagabine. Following a steered molecular dynamics (SMD) approach, in which a harmonic restraining potential is applied to the ligand, dissociation and re-association of ligands were simulated revealing events leading to substrate (GABA) translocation and inhibitor (tiagabine) mechanism of action. We succeeded in turning the transporter from the outward facing occluded to the open-to-out conformation, and also to reorient the transporter to the open-to-in conformation. The simulations are validated by literature data and provide a substrate pathway fingerprint in terms of which, how, and in which sequence specific residues are interacted with. They reveal the essential functional roles of specific residues, e.g. the role of charged residues in the extracellular vestibule including two lysines (K76 (TM1) and K448 (TM10)) and a TM6-triad (D281, E283, and D287) in attracting and relocating substrates towards the secondary/interim substrate-binding site (S2). Likewise, E101 is highlighted as essential for the relocation of the substrate from the primary substrate-binding site (S1) towards the cytoplasm

    Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm

    Get PDF
    A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and “snapshots” of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited “crowding” effect must be included in attempts to understand macromolecular behavior in vivo
    corecore