461 research outputs found

    Deactivation of electrically supersaturated Te-doped InGaAs grown by MOCVD

    Get PDF
    Achieving and sustaining the highest doping level possible in InGaAs is critical for the reduction of contact resistance in future microelectronic applications. Tellurium (Te) is a very promising n-type dopant with high reported n-type doping densities. However, the stability of this dopant during post-growth thermal processing is unknown. Supersaturated Te-doped InGaAs layers were grown by MOCVD at 500 °C. The electrically active concentration of Te doping was 4.4 × 1019 cm−3 as grown. The thermal stability of the Te was investigated by studying the effect of post-growth annealing between 550 and 700 °C on the electrical activation. At all temperatures, the electrical activation decreased from its starting electron concentration of 4.4 × 1019 cm−3 down to 6–7 × 1018 cm−3. The rate of deactivation was measured at each temperature, and the activation energy for the deactivation process was determined to be 2.6 eV. The deactivation could be caused by either Te–Te clustering or a Te-point defect reaction. HAADF-STEM images showed no visible clustering or precipitation after deactivation. Based on previous ab initio calculations that suggest the VIII population increases as the Fermi level moves toward the conduction band, it is proposed that formation of isolated point defect complexes, possibly a Te–VIII complex, is associated with the deactivation process

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures

    Get PDF
    Motivation: Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. Methods: We compare 32 feature selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. Results: We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Simple filter methods generally outperform more complex embedded or wrapper methods, and ensemble feature selection has generally no positive effect. Overall a simple Student's t-test seems to provide the best results. Availability: Code and data are publicly available at http://cbio.ensmp.fr/~ahaury/

    Classification of microarray data using gene networks

    Get PDF
    BACKGROUND: Microarrays have become extremely useful for analysing genetic phenomena, but establishing a relation between microarray analysis results (typically a list of genes) and their biological significance is often difficult. Currently, the standard approach is to map a posteriori the results onto gene networks in order to elucidate the functions perturbed at the level of pathways. However, integrating a priori knowledge of the gene networks could help in the statistical analysis of gene expression data and in their biological interpretation. RESULTS: We propose a method to integrate a priori the knowledge of a gene network in the analysis of gene expression data. The approach is based on the spectral decomposition of gene expression profiles with respect to the eigenfunctions of the graph, resulting in an attenuation of the high-frequency components of the expression profiles with respect to the topology of the graph. We show how to derive unsupervised and supervised classification algorithms of expression profiles, resulting in classifiers with biological relevance. We illustrate the method with the analysis of a set of expression profiles from irradiated and non-irradiated yeast strains. CONCLUSION: Including a priori knowledge of a gene network for the analysis of gene expression data leads to good classification performance and improved interpretability of the results

    Modelling regional land change scenarios to assess land abandonment and reforestation dynamics in the Pyrenees (France)

    Get PDF
    International audienceOver the last decades and centuries, European mountain landscapes have experienced substantial transformations. Natural and anthropogenic LULC changes (land use and land cover changes), especially agro-pastoral activities, have directed influenced the spatial organization and composition of European mountain landscapes. For the past 60 years, natural reforestation has been occurring due to a decline in both agricultural production activities and rural population. Stakeholders, to better anticipate future changes, need spatially and temporally explicit models to identiy areas at risk of land change and possible abandonment. This paper presents an integrated approach combining forecasting scenarios and a LULC changes simulation model to assess where LULC changes may occur in the Pyrenees Mountains, based on historical LULC trands and a range of future socio-economic drivers. The proposed methodology considers local specificities of Pyrenan valleys, sub-regional climate and topographical properties, and regional economic policies. Results indicate that some regions are projected to face strong abandonment, regardless of scenario conditions. Overall, high rates of change are associated with administrative regions where land productivity is highly dependent on socio-economic drivers and climatic and environmental conditions limit intensive (agricultural and/or pastoral) production and profitability. The combination of the results for the four scenarios allows assessements of where encroachment (e.g. colonization by shrublands) and reforestation are the most probable. This assessment intends to provide insight into the potential future development of the Pyrenees to help identify areas that are the most sensitive to change and to guide decision makers to help their management decisions

    Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput peptide and protein identification technologies have benefited tremendously from strategies based on tandem mass spectrometry (MS/MS) in combination with database searching algorithms. A major problem with existing methods lies within the significant number of false positive and false negative annotations. So far, standard algorithms for protein identification do not use the information gained from separation processes usually involved in peptide analysis, such as retention time information, which are readily available from chromatographic separation of the sample. Identification can thus be improved by comparing measured retention times to predicted retention times. Current prediction models are derived from a set of measured test analytes but they usually require large amounts of training data.</p> <p>Results</p> <p>We introduce a new kernel function which can be applied in combination with support vector machines to a wide range of computational proteomics problems. We show the performance of this new approach by applying it to the prediction of peptide adsorption/elution behavior in strong anion-exchange solid-phase extraction (SAX-SPE) and ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Furthermore, the predicted retention times are used to improve spectrum identifications by a <it>p</it>-value-based filtering approach. The approach was tested on a number of different datasets and shows excellent performance while requiring only very small training sets (about 40 peptides instead of thousands). Using the retention time predictor in our retention time filter improves the fraction of correctly identified peptide mass spectra significantly.</p> <p>Conclusion</p> <p>The proposed kernel function is well-suited for the prediction of chromatographic separation in computational proteomics and requires only a limited amount of training data. The performance of this new method is demonstrated by applying it to peptide retention time prediction in IP-RP-HPLC and prediction of peptide sample fractionation in SAX-SPE. Finally, we incorporate the predicted chromatographic behavior in a <it>p</it>-value based filter to improve peptide identifications based on liquid chromatography-tandem mass spectrometry.</p
    corecore