13,961 research outputs found

    Alternatives to the Gypsy Moth Eradication Program in Michigan

    Get PDF
    Responding to questions of what the gypsy moth, Porthetria dispar, would do in Michigan forests, a computer simulation model was constructed. The model consisted of three subunits: a submodel of gypsy moth population dynamics, a submodel of forest growth and a submodel of tree defoliation and mortality. Several different policies were simulated for an 80 year period. The eradication policy now employed in Michigan failed due to survival of small portions of the population. Allowing the gypsy moth to become established in Michigan forests and then responding by spraying when defoliation is visible provided a policy with the least economic and environmental cost

    Forestland type identification and analysis in Western Massachussetts: A linkage of a LANDSAT forest inventory to an optimization study

    Get PDF
    Digital land cover files derived from computer processing of LANDSAT and soil productivity data were linked and used by linear programming model to determine production of forested areas under different management strategies. Results of model include maps and data graphics for four-county region in Western Massachusetts

    Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Get PDF
    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow

    Acoustic waves: should they be propagated forward in time, or forward in space?

    Get PDF
    The evolution of acoustic waves can be evaluated in two ways: either as a temporal, or a spatial propagation. Propagating in space provides the considerable advantage of being able to handle dispersion and propagation across interfaces with remarkable efficiency; but propagating in time is more physical and gives correctly behaved reflections and scattering without effort. Which should be chosen in a given situation, and what compromises might have to be made? Here the natural behaviors of each choice of propagation are compared and contrasted for an ordinary second order wave equation, the time-dependent diffusion wave equation, an elastic rod wave equation, and the Stokes'/ van Wijngaarden's equations, each case illuminating a characteristic feature of the technique. Either choice of propagation axis enables a partitioning the wave equation that gives rise to a directional factorization based on a natural "reference" dispersion relation. The resulting exact coupled bidirectional equations then reduce to a single unidirectional first-order wave equation using a simple "slow evolution" assumption that minimizes effect of subsequent approximations, while allowing a direct term-to-term comparison between exact and approximate theories.Comment: 12 pages, v2 correcte

    The Lincoln County Rural Water System: Growth Impacts

    Get PDF
    This report, which summarizes the results of a study of the Lincoln County Rural Water System, is focused on the question: Does a rural water system affect property values-and population growth

    Wave localization in binary isotopically disordered one-dimensional harmonic chains with impurities having arbitrary cross section and concentration

    Full text link
    The localization length for isotopically disordered harmonic one-dimensional chains is calculated for arbitrary impurity concentration and scattering cross section. The localization length depends on the scattering cross section of a single scatterer, which is calculated for a discrete chain having a wavelength dependent pulse propagation speed. For binary isotopically disordered systems composed of many scatterers, the localization length decreases with increasing impurity concentration, reaching a mimimum before diverging toward infinity as the impurity concentration approaches a value of one. The concentration dependence of the localization length over the entire impurity concentration range is approximated accurately by the sum of the behavior at each limiting concentration. Simultaneous measurements of Lyapunov exponent statistics indicate practical limits for the minimum system length and the number of scatterers to achieve representative ensemble averages. Results are discussed in the context of future investigations of the time-dependent behavior of disordered anharmonic chains.Comment: 8 pages, 10 figures, submitted to PR

    Elastic response of a nematic liquid crystal to an immersed nanowire

    Full text link
    We study the immersion of a ferromagnetic nanowire within a nematic liquid crystal using a lattice Boltzmann algorithm to solve the full three-dimensional equations of hydrodynamics. We present an algorithm for including a moving boundary, to simulate a nanowire, in a lattice Boltzmann simulation. The nematic imposes a torque on a wire that increases linearly with the angle between the wire and the equilibrium direction of the director field. By rotation of these nanowires, one can determine the elastic constants of the nematic.Comment: 10 pages, 8 figure

    Force-extension relation of cross-linked anisotropic polymer networks

    Get PDF
    Cross-linked polymer networks with orientational order constitute a wide class of soft materials and are relevant to biological systems (e.g., F-actin bundles). We analytically study the nonlinear force-extension relation of an array of parallel-aligned, strongly stretched semiflexible polymers with random cross-links. In the strong stretching limit, the effect of the cross-links is purely entropic, independent of the bending rigidity of the chains. Cross-links enhance the differential stretching stiffness of the bundle. For hard cross-links, the cross-link contribution to the force-extension relation scales inversely proportional to the force. Its dependence on the cross-link density, close to the gelation transition, is the same as that of the shear modulus. The qualitative behavior is captured by a toy model of two chains with a single cross-link in the middle.Comment: 7 pages, 4 figure

    Gravitational Instantons, Confocal Quadrics and Separability of the Schr\"odinger and Hamilton-Jacobi equations

    Full text link
    A hyperk\"ahler 4-metric with a triholomorphic SU(2) action gives rise to a family of confocal quadrics in Euclidean 3-space when cast in the canonical form of a hyperk\"ahler 4-metric metric with a triholomorphic circle action. Moreover, at least in the case of geodesics orthogonal to the U(1) fibres, both the covariant Schr\"odinger and the Hamilton-Jacobi equation is separable and the system integrable.Comment: 10 pages Late
    corecore